ray.rllib.core.learner.learner.Learner._is_module_compatible_with_learner#
- abstract Learner._is_module_compatible_with_learner(module: RLModule) bool [source]#
Check whether the module is compatible with the learner.
For example, if there is a random RLModule, it will not be a torch or tf module, but rather it is a numpy module. Therefore we should not consider it during gradient based optimization.
- Parameters:
module – The module to check.
- Returns:
True if the module is compatible with the learner.