ray.serve.config.AutoscalingConfig#
- class ray.serve.config.AutoscalingConfig(*, min_replicas: NonNegativeInt = 1, initial_replicas: NonNegativeInt | None = None, max_replicas: PositiveInt = 1, target_ongoing_requests: PositiveFloat = 2, metrics_interval_s: PositiveFloat = 10.0, look_back_period_s: PositiveFloat = 30.0, smoothing_factor: PositiveFloat = 1.0, upscale_smoothing_factor: PositiveFloat | None = None, downscale_smoothing_factor: PositiveFloat | None = None, upscaling_factor: PositiveFloat | None = None, downscaling_factor: PositiveFloat | None = None, downscale_delay_s: NonNegativeFloat = 600.0, upscale_delay_s: NonNegativeFloat = 30.0)[source]#
Bases:
BaseModel
Config for the Serve Autoscaler.
Methods
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Duplicate a model, optionally choose which fields to include, exclude and change.
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Deserialize policy from cloudpickled bytes.
Generate a JSON representation of the model,
include
andexclude
arguments as perdict()
.Serialize policy with cloudpickle.
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Attributes