Source code for ray.serve.config

import logging
import warnings
from enum import Enum
from typing import Any, Callable, List, Optional, Union

from ray import cloudpickle
from ray._private.pydantic_compat import (
    BaseModel,
    Field,
    NonNegativeFloat,
    NonNegativeInt,
    PositiveFloat,
    PositiveInt,
    PrivateAttr,
    validator,
)
from ray._private.utils import import_attr
from ray.serve._private.constants import (
    DEFAULT_AUTOSCALING_POLICY,
    DEFAULT_GRPC_PORT,
    DEFAULT_HTTP_HOST,
    DEFAULT_HTTP_PORT,
    DEFAULT_TARGET_ONGOING_REQUESTS,
    DEFAULT_UVICORN_KEEP_ALIVE_TIMEOUT_S,
    SERVE_LOGGER_NAME,
)
from ray.util.annotations import Deprecated, PublicAPI

logger = logging.getLogger(SERVE_LOGGER_NAME)


[docs] @PublicAPI(stability="stable") class AutoscalingConfig(BaseModel): """Config for the Serve Autoscaler.""" # Please keep these options in sync with those in # `src/ray/protobuf/serve.proto`. # Publicly exposed options min_replicas: NonNegativeInt = 1 initial_replicas: Optional[NonNegativeInt] = None max_replicas: PositiveInt = 1 target_ongoing_requests: PositiveFloat = DEFAULT_TARGET_ONGOING_REQUESTS # How often to scrape for metrics metrics_interval_s: PositiveFloat = 10.0 # Time window to average over for metrics. look_back_period_s: PositiveFloat = 30.0 # DEPRECATED smoothing_factor: PositiveFloat = 1.0 # DEPRECATED: replaced by `downscaling_factor` upscale_smoothing_factor: Optional[PositiveFloat] = Field( default=None, description="[DEPRECATED] Please use `upscaling_factor` instead." ) # DEPRECATED: replaced by `upscaling_factor` downscale_smoothing_factor: Optional[PositiveFloat] = Field( default=None, description="[DEPRECATED] Please use `downscaling_factor` instead.", ) # Multiplicative "gain" factor to limit scaling decisions upscaling_factor: Optional[PositiveFloat] = None downscaling_factor: Optional[PositiveFloat] = None # How frequently to make autoscaling decisions # loop_period_s: float = CONTROL_LOOP_PERIOD_S # How long to wait before scaling down replicas downscale_delay_s: NonNegativeFloat = 600.0 # How long to wait before scaling up replicas upscale_delay_s: NonNegativeFloat = 30.0 # Cloudpickled policy definition. _serialized_policy_def: bytes = PrivateAttr(default=b"") # Custom autoscaling config. Defaults to the request-based autoscaler. _policy: Union[str, Callable] = PrivateAttr(default=DEFAULT_AUTOSCALING_POLICY) @validator("max_replicas", always=True) def replicas_settings_valid(cls, max_replicas, values): min_replicas = values.get("min_replicas") initial_replicas = values.get("initial_replicas") if min_replicas is not None and max_replicas < min_replicas: raise ValueError( f"max_replicas ({max_replicas}) must be greater than " f"or equal to min_replicas ({min_replicas})!" ) if initial_replicas is not None: if initial_replicas < min_replicas: raise ValueError( f"min_replicas ({min_replicas}) must be less than " f"or equal to initial_replicas ({initial_replicas})!" ) elif initial_replicas > max_replicas: raise ValueError( f"max_replicas ({max_replicas}) must be greater than " f"or equal to initial_replicas ({initial_replicas})!" ) return max_replicas def __init__(self, **kwargs): super().__init__(**kwargs) self.serialize_policy()
[docs] def serialize_policy(self) -> None: """Serialize policy with cloudpickle. Import the policy if it's passed in as a string import path. Then cloudpickle the policy and set `serialized_policy_def` if it's empty. """ values = self.dict() policy = values.get("_policy") if isinstance(policy, Callable): policy = f"{policy.__module__}.{policy.__name__}" if not policy: policy = DEFAULT_AUTOSCALING_POLICY policy_path = policy policy = import_attr(policy) if not values.get("_serialized_policy_def"): self._serialized_policy_def = cloudpickle.dumps(policy) self._policy = policy_path
@classmethod def default(cls): return cls( target_ongoing_requests=DEFAULT_TARGET_ONGOING_REQUESTS, min_replicas=1, max_replicas=100, )
[docs] def get_policy(self) -> Callable: """Deserialize policy from cloudpickled bytes.""" return cloudpickle.loads(self._serialized_policy_def)
def get_upscaling_factor(self) -> PositiveFloat: if self.upscaling_factor: return self.upscaling_factor return self.upscale_smoothing_factor or self.smoothing_factor def get_downscaling_factor(self) -> PositiveFloat: if self.downscaling_factor: return self.downscaling_factor return self.downscale_smoothing_factor or self.smoothing_factor def get_target_ongoing_requests(self) -> PositiveFloat: return self.target_ongoing_requests
# Keep in sync with ServeDeploymentMode in dashboard/client/src/type/serve.ts @Deprecated class DeploymentMode(str, Enum): NoServer = "NoServer" HeadOnly = "HeadOnly" EveryNode = "EveryNode"
[docs] @PublicAPI(stability="stable") class ProxyLocation(str, Enum): """Config for where to run proxies to receive ingress traffic to the cluster. Options: - Disabled: don't run proxies at all. This should be used if you are only making calls to your applications via deployment handles. - HeadOnly: only run a single proxy on the head node. - EveryNode: run a proxy on every node in the cluster that has at least one replica actor. This is the default. """ Disabled = "Disabled" HeadOnly = "HeadOnly" EveryNode = "EveryNode" @classmethod def _to_deployment_mode( cls, proxy_location: Union["ProxyLocation", str] ) -> DeploymentMode: if isinstance(proxy_location, str): proxy_location = ProxyLocation(proxy_location) elif not isinstance(proxy_location, ProxyLocation): raise TypeError( f"Must be a `ProxyLocation` or str, got: {type(proxy_location)}." ) if proxy_location == ProxyLocation.Disabled: return DeploymentMode.NoServer else: return DeploymentMode(proxy_location.value) @classmethod def _from_deployment_mode( cls, deployment_mode: Optional[Union[DeploymentMode, str]] ) -> Optional["ProxyLocation"]: """Converts DeploymentMode enum into ProxyLocation enum. DeploymentMode is a deprecated version of ProxyLocation that's still used internally throughout Serve. """ if deployment_mode is None: return None elif isinstance(deployment_mode, str): deployment_mode = DeploymentMode(deployment_mode) elif not isinstance(deployment_mode, DeploymentMode): raise TypeError( f"Must be a `DeploymentMode` or str, got: {type(deployment_mode)}." ) if deployment_mode == DeploymentMode.NoServer: return ProxyLocation.Disabled else: return ProxyLocation(deployment_mode.value)
[docs] @PublicAPI(stability="stable") class HTTPOptions(BaseModel): """HTTP options for the proxies. Supported fields: - host: Host that the proxies listens for HTTP on. Defaults to "127.0.0.1". To expose Serve publicly, you probably want to set this to "0.0.0.0". - port: Port that the proxies listen for HTTP on. Defaults to 8000. - root_path: An optional root path to mount the serve application (for example, "/prefix"). All deployment routes are prefixed with this path. - request_timeout_s: End-to-end timeout for HTTP requests. - keep_alive_timeout_s: Duration to keep idle connections alive when no requests are ongoing. - location: [DEPRECATED: use `proxy_location` field instead] The deployment location of HTTP servers: - "HeadOnly": start one HTTP server on the head node. Serve assumes the head node is the node you executed serve.start on. This is the default. - "EveryNode": start one HTTP server per node. - "NoServer": disable HTTP server. - num_cpus: [DEPRECATED] The number of CPU cores to reserve for each internal Serve HTTP proxy actor. """ host: Optional[str] = DEFAULT_HTTP_HOST port: int = DEFAULT_HTTP_PORT middlewares: List[Any] = [] location: Optional[DeploymentMode] = DeploymentMode.HeadOnly num_cpus: int = 0 root_url: str = "" root_path: str = "" request_timeout_s: Optional[float] = None keep_alive_timeout_s: int = DEFAULT_UVICORN_KEEP_ALIVE_TIMEOUT_S @validator("location", always=True) def location_backfill_no_server(cls, v, values): if values["host"] is None or v is None: return DeploymentMode.NoServer return v @validator("middlewares", always=True) def warn_for_middlewares(cls, v, values): if v: warnings.warn( "Passing `middlewares` to HTTPOptions is deprecated and will be " "removed in a future version. Consider using the FastAPI integration " "to configure middlewares on your deployments: " "https://docs.ray.io/en/latest/serve/http-guide.html#fastapi-http-deployments" # noqa 501 ) return v @validator("num_cpus", always=True) def warn_for_num_cpus(cls, v, values): if v: warnings.warn( "Passing `num_cpus` to HTTPOptions is deprecated and will be " "removed in a future version." ) return v class Config: validate_assignment = True arbitrary_types_allowed = True
[docs] @PublicAPI(stability="alpha") class gRPCOptions(BaseModel): """gRPC options for the proxies. Supported fields: Args: port (int): Port for gRPC server if started. Default to 9000. Cannot be updated once Serve has started running. Serve must be shut down and restarted with the new port instead. grpc_servicer_functions (List[str]): List of import paths for gRPC `add_servicer_to_server` functions to add to Serve's gRPC proxy. Default to empty list, which means no gRPC methods will be added and no gRPC server will be started. The servicer functions need to be importable from the context of where Serve is running. """ port: int = DEFAULT_GRPC_PORT grpc_servicer_functions: List[str] = [] @property def grpc_servicer_func_callable(self) -> List[Callable]: """Return a list of callable functions from the grpc_servicer_functions. If the function is not callable or not found, it will be ignored and a warning will be logged. """ callables = [] for func in self.grpc_servicer_functions: try: imported_func = import_attr(func) if callable(imported_func): callables.append(imported_func) else: message = ( f"{func} is not a callable function! Please make sure " "the function is imported correctly." ) raise ValueError(message) except ModuleNotFoundError as e: message = ( f"{func} can't be imported! Please make sure there are no typo " "in those functions. Or you might want to rebuild service " "definitions if .proto file is changed." ) raise ModuleNotFoundError(message) from e return callables