ray.data.read_images#
- ray.data.read_images(paths: str | List[str], *, filesystem: pyarrow.fs.FileSystem | None = None, parallelism: int = -1, meta_provider: BaseFileMetadataProvider | None = None, ray_remote_args: Dict[str, Any] = None, arrow_open_file_args: Dict[str, Any] | None = None, partition_filter: PathPartitionFilter | None = None, partitioning: Partitioning = None, size: Tuple[int, int] | None = None, mode: str | None = None, include_paths: bool = False, ignore_missing_paths: bool = False, shuffle: Literal['files'] | None = None, file_extensions: List[str] | None = ['png', 'jpg', 'jpeg', 'tif', 'tiff', 'bmp', 'gif'], concurrency: int | None = None, override_num_blocks: int | None = None) Dataset [source]#
Creates a
Dataset
from image files.Examples
>>> import ray >>> path = "s3://anonymous@ray-example-data/batoidea/JPEGImages/" >>> ds = ray.data.read_images(path) >>> ds.schema() Column Type ------ ---- image numpy.ndarray(shape=(32, 32, 3), dtype=uint8)
If you need image file paths, set
include_paths=True
.>>> ds = ray.data.read_images(path, include_paths=True) >>> ds.schema() Column Type ------ ---- image numpy.ndarray(shape=(32, 32, 3), dtype=uint8) path string >>> ds.take(1)[0]["path"] 'ray-example-data/batoidea/JPEGImages/1.jpeg'
If your images are arranged like:
root/dog/xxx.png root/dog/xxy.png root/cat/123.png root/cat/nsdf3.png
Then you can include the labels by specifying a
Partitioning
.>>> import ray >>> from ray.data.datasource.partitioning import Partitioning >>> root = "s3://anonymous@ray-example-data/image-datasets/dir-partitioned" >>> partitioning = Partitioning("dir", field_names=["class"], base_dir=root) >>> ds = ray.data.read_images(root, size=(224, 224), partitioning=partitioning) >>> ds.schema() Column Type ------ ---- image numpy.ndarray(shape=(224, 224, 3), dtype=uint8) class string
- Parameters:
paths – A single file or directory, or a list of file or directory paths. A list of paths can contain both files and directories.
filesystem – The pyarrow filesystem implementation to read from. These filesystems are specified in the pyarrow docs. Specify this parameter if you need to provide specific configurations to the filesystem. By default, the filesystem is automatically selected based on the scheme of the paths. For example, if the path begins with
s3://
, theS3FileSystem
is used.parallelism – This argument is deprecated. Use
override_num_blocks
argument.meta_provider – A file metadata provider. Custom metadata providers may be able to resolve file metadata more quickly and/or accurately. In most cases, you do not need to set this. If
None
, this function uses a system-chosen implementation.ray_remote_args – kwargs passed to
remote()
in the read tasks.arrow_open_file_args – kwargs passed to pyarrow.fs.FileSystem.open_input_file. when opening input files to read.
partition_filter – A
PathPartitionFilter
. Use with a custom callback to read only selected partitions of a dataset. By default, this filters out any file paths whose file extension does not match*.png
,*.jpg
,*.jpeg
,*.tiff
,*.bmp
, or*.gif
.partitioning – A
Partitioning
object that describes how paths are organized. Defaults toNone
.size – The desired height and width of loaded images. If unspecified, images retain their original shape.
mode – A Pillow mode describing the desired type and depth of pixels. If unspecified, image modes are inferred by Pillow.
include_paths – If
True
, include the path to each image. File paths are stored in the'path'
column.ignore_missing_paths – If True, ignores any file/directory paths in
paths
that are not found. Defaults to False.shuffle – If setting to “files”, randomly shuffle input files order before read. Defaults to not shuffle with
None
.file_extensions – A list of file extensions to filter files by.
concurrency – The maximum number of Ray tasks to run concurrently. Set this to control number of tasks to run concurrently. This doesn’t change the total number of tasks run or the total number of output blocks. By default, concurrency is dynamically decided based on the available resources.
override_num_blocks – Override the number of output blocks from all read tasks. By default, the number of output blocks is dynamically decided based on input data size and available resources. You shouldn’t manually set this value in most cases.
- Returns:
A
Dataset
producing tensors that represent the images at the specified paths. For information on working with tensors, read the tensor data guide.- Raises:
ValueError – if
size
contains non-positive numbers.ValueError – if
mode
is unsupported.
PublicAPI (beta): This API is in beta and may change before becoming stable.