Source code for ray.util.collective.collective

"""APIs exposed under the namespace ray.util.collective."""
import logging
import os
from typing import List

import numpy as np

import ray
from ray.util.collective import types

_NCCL_AVAILABLE = True
_GLOO_AVAILABLE = True

logger = logging.getLogger(__name__)

try:
    from ray.util.collective.collective_group.nccl_collective_group import NCCLGroup
except ImportError:
    _NCCL_AVAILABLE = False
    logger.warning(
        "NCCL seems unavailable. Please install Cupy "
        "following the guide at: "
        "https://docs.cupy.dev/en/stable/install.html."
    )

try:
    from ray.util.collective.collective_group.gloo_collective_group import GLOOGroup
except ImportError:
    _GLOO_AVAILABLE = False


def nccl_available():
    return _NCCL_AVAILABLE


def gloo_available():
    return _GLOO_AVAILABLE


[docs] class GroupManager(object): """Use this class to manage the collective groups we created so far. Each process will have an instance of `GroupManager`. Each process could belong to multiple collective groups. The membership information and other metadata are stored in the global `_group_mgr` object. """ def __init__(self): self._name_group_map = {} self._group_name_map = {}
[docs] def create_collective_group(self, backend, world_size, rank, group_name): """The entry to create new collective groups in the manager. Put the registration and the group information into the manager metadata as well. """ backend = types.Backend(backend) if backend == types.Backend.MPI: raise RuntimeError("Ray does not support MPI.") elif backend == types.Backend.GLOO: logger.debug("Creating GLOO group: '{}'...".format(group_name)) g = GLOOGroup( world_size, rank, group_name, store_type="ray_internal_kv", device_type="tcp", ) self._name_group_map[group_name] = g self._group_name_map[g] = group_name elif backend == types.Backend.NCCL: logger.debug("Creating NCCL group: '{}'...".format(group_name)) g = NCCLGroup(world_size, rank, group_name) self._name_group_map[group_name] = g self._group_name_map[g] = group_name return self._name_group_map[group_name]
def is_group_exist(self, group_name): return group_name in self._name_group_map
[docs] def get_group_by_name(self, group_name): """Get the collective group handle by its name.""" if not self.is_group_exist(group_name): logger.warning("The group '{}' is not initialized.".format(group_name)) return None return self._name_group_map[group_name]
[docs] def destroy_collective_group(self, group_name): """Group destructor.""" if not self.is_group_exist(group_name): logger.warning("The group '{}' does not exist.".format(group_name)) return # release the collective group resource g = self._name_group_map[group_name] # clean up the dicts del self._group_name_map[g] del self._name_group_map[group_name] # Release the communicator resources g.destroy_group() # Release the detached actors spawned by `create_collective_group()` name = "info_" + group_name try: store = ray.get_actor(name) ray.kill(store) except ValueError: pass
_group_mgr = GroupManager()
[docs] def is_group_initialized(group_name): """Check if the group is initialized in this process by the group name.""" return _group_mgr.is_group_exist(group_name)
[docs] def init_collective_group( world_size: int, rank: int, backend=types.Backend.NCCL, group_name: str = "default" ): """Initialize a collective group inside an actor process. Args: world_size: the total number of processes in the group. rank: the rank of the current process. backend: the CCL backend to use, NCCL or GLOO. group_name: the name of the collective group. Returns: None """ _check_inside_actor() backend = types.Backend(backend) _check_backend_availability(backend) global _group_mgr # TODO(Hao): implement a group auto-counter. if not group_name: raise ValueError("group_name '{}' needs to be a string.".format(group_name)) if _group_mgr.is_group_exist(group_name): raise RuntimeError("Trying to initialize a group twice.") assert world_size > 0 assert rank >= 0 assert rank < world_size _group_mgr.create_collective_group(backend, world_size, rank, group_name)
[docs] def create_collective_group( actors, world_size: int, ranks: List[int], backend=types.Backend.NCCL, group_name: str = "default", ): """Declare a list of actors as a collective group. Note: This function should be called in a driver process. Args: actors: a list of actors to be set in a collective group. world_size: the total number of processes in the group. ranks (List[int]): the rank of each actor. backend: the CCL backend to use, NCCL or GLOO. group_name: the name of the collective group. Returns: None """ backend = types.Backend(backend) _check_backend_availability(backend) name = "info_" + group_name try: ray.get_actor(name) raise RuntimeError("Trying to initialize a group twice.") except ValueError: pass if len(ranks) != len(actors): raise RuntimeError( "Each actor should correspond to one rank. Got '{}' " "ranks but '{}' actors".format(len(ranks), len(actors)) ) if set(ranks) != set(range(len(ranks))): raise RuntimeError( "Ranks must be a permutation from 0 to '{}'. Got '{}'.".format( len(ranks), "".join([str(r) for r in ranks]) ) ) if world_size <= 0: raise RuntimeError( "World size must be greater than zero. Got '{}'.".format(world_size) ) if not all(ranks) >= 0: raise RuntimeError("Ranks must be non-negative.") if not all(ranks) < world_size: raise RuntimeError("Ranks cannot be greater than world_size.") # avoid a circular dependency from ray.util.collective.util import Info # store the information into a NamedActor that can be accessed later. name = "info_" + group_name actors_id = [a._ray_actor_id for a in actors] # TODO (Dacheng): how do we recycle this name actor? info = Info.options(name=name, lifetime="detached").remote() ray.get([info.set_info.remote(actors_id, world_size, ranks, backend)])
# TODO (we need a declarative destroy() API here.)
[docs] def destroy_collective_group(group_name: str = "default") -> None: """Destroy a collective group given its group name.""" _check_inside_actor() global _group_mgr _group_mgr.destroy_collective_group(group_name)
[docs] def get_rank(group_name: str = "default") -> int: """Return the rank of this process in the given group. Args: group_name: the name of the group to query Returns: the rank of this process in the named group, -1 if the group does not exist or the process does not belong to the group. """ _check_inside_actor() if not is_group_initialized(group_name): return -1 g = _group_mgr.get_group_by_name(group_name) return g.rank
[docs] def get_collective_group_size(group_name: str = "default") -> int: """Return the size of the collective group with the given name. Args: group_name: the name of the group to query Returns: The world size of the collective group, -1 if the group does not exist or the process does not belong to the group. """ _check_inside_actor() if not is_group_initialized(group_name): return -1 g = _group_mgr.get_group_by_name(group_name) return g.world_size
[docs] def allreduce(tensor, group_name: str = "default", op=types.ReduceOp.SUM): """Collective allreduce the tensor across the group. Args: tensor: the tensor to be all-reduced on this process. group_name: the collective group name to perform allreduce. op: The reduce operation. Returns: None """ _check_single_tensor_input(tensor) g = _check_and_get_group(group_name) opts = types.AllReduceOptions opts.reduceOp = op g.allreduce([tensor], opts)
[docs] def allreduce_multigpu( tensor_list: list, group_name: str = "default", op=types.ReduceOp.SUM ): """Collective allreduce a list of tensors across the group. Args: tensor_list (List[tensor]): list of tensors to be allreduced, each on a GPU. group_name: the collective group name to perform allreduce. Returns: None """ if not types.cupy_available(): raise RuntimeError("Multigpu calls requires NCCL and Cupy.") _check_tensor_list_input(tensor_list) g = _check_and_get_group(group_name) opts = types.AllReduceOptions opts.reduceOp = op g.allreduce(tensor_list, opts)
[docs] def barrier(group_name: str = "default"): """Barrier all processes in the collective group. Args: group_name: the name of the group to barrier. Returns: None """ g = _check_and_get_group(group_name) g.barrier()
[docs] def reduce( tensor, dst_rank: int = 0, group_name: str = "default", op=types.ReduceOp.SUM ): """Reduce the tensor across the group to the destination rank. Args: tensor: the tensor to be reduced on this process. dst_rank: the rank of the destination process. group_name: the collective group name to perform reduce. op: The reduce operation. Returns: None """ _check_single_tensor_input(tensor) g = _check_and_get_group(group_name) # check dst rank _check_rank_valid(g, dst_rank) opts = types.ReduceOptions() opts.reduceOp = op opts.root_rank = dst_rank opts.root_tensor = 0 g.reduce([tensor], opts)
[docs] def reduce_multigpu( tensor_list: list, dst_rank: int = 0, dst_tensor: int = 0, group_name: str = "default", op=types.ReduceOp.SUM, ): """Reduce the tensor across the group to the destination rank and destination tensor. Args: tensor_list: the list of tensors to be reduced on this process; each tensor located on a GPU. dst_rank: the rank of the destination process. dst_tensor: the index of GPU at the destination. group_name: the collective group name to perform reduce. op: The reduce operation. Returns: None """ if not types.cupy_available(): raise RuntimeError("Multigpu calls requires NCCL and Cupy.") _check_tensor_list_input(tensor_list) g = _check_and_get_group(group_name) # check dst rank _check_rank_valid(g, dst_rank) _check_root_tensor_valid(len(tensor_list), dst_tensor) opts = types.ReduceOptions() opts.reduceOp = op opts.root_rank = dst_rank opts.root_tensor = dst_tensor g.reduce(tensor_list, opts)
[docs] def broadcast(tensor, src_rank: int = 0, group_name: str = "default"): """Broadcast the tensor from a source process to all others. Args: tensor: the tensor to be broadcasted (src) or received (destination). src_rank: the rank of the source process. group_name: the collective group name to perform broadcast. Returns: None """ _check_single_tensor_input(tensor) g = _check_and_get_group(group_name) # check src rank _check_rank_valid(g, src_rank) opts = types.BroadcastOptions() opts.root_rank = src_rank opts.root_tensor = 0 g.broadcast([tensor], opts)
[docs] def broadcast_multigpu( tensor_list, src_rank: int = 0, src_tensor: int = 0, group_name: str = "default" ): """Broadcast the tensor from a source GPU to all other GPUs. Args: tensor_list: the tensors to broadcast (src) or receive (dst). src_rank: the rank of the source process. src_tensor: the index of the source GPU on the source process. group_name: the collective group name to perform broadcast. Returns: None """ if not types.cupy_available(): raise RuntimeError("Multigpu calls requires NCCL and Cupy.") _check_tensor_list_input(tensor_list) g = _check_and_get_group(group_name) # check src rank _check_rank_valid(g, src_rank) _check_root_tensor_valid(len(tensor_list), src_tensor) opts = types.BroadcastOptions() opts.root_rank = src_rank opts.root_tensor = src_tensor g.broadcast(tensor_list, opts)
[docs] def allgather(tensor_list: list, tensor, group_name: str = "default"): """Allgather tensors from each process of the group into a list. Args: tensor_list: the results, stored as a list of tensors. tensor: the tensor (to be gathered) in the current process group_name: the name of the collective group. Returns: None """ _check_single_tensor_input(tensor) _check_tensor_list_input(tensor_list) g = _check_and_get_group(group_name) if len(tensor_list) != g.world_size: # Typically CLL lib requires len(tensor_list) >= world_size; # Here we make it more strict: len(tensor_list) == world_size. raise RuntimeError( "The length of the tensor list operands to allgather " "must be equal to world_size." ) opts = types.AllGatherOptions() g.allgather([tensor_list], [tensor], opts)
[docs] def allgather_multigpu( output_tensor_lists: list, input_tensor_list: list, group_name: str = "default" ): """Allgather tensors from each gpus of the group into lists. Args: output_tensor_lists (List[List[tensor]]): gathered results, with shape must be num_gpus * world_size * shape(tensor). input_tensor_list: (List[tensor]): a list of tensors, with shape num_gpus * shape(tensor). group_name: the name of the collective group. Returns: None """ if not types.cupy_available(): raise RuntimeError("Multigpu calls requires NCCL and Cupy.") _check_tensor_lists_input(output_tensor_lists) _check_tensor_list_input(input_tensor_list) g = _check_and_get_group(group_name) opts = types.AllGatherOptions() g.allgather(output_tensor_lists, input_tensor_list, opts)
[docs] def reducescatter( tensor, tensor_list: list, group_name: str = "default", op=types.ReduceOp.SUM ): """Reducescatter a list of tensors across the group. Reduce the list of the tensors across each process in the group, then scatter the reduced list of tensors -- one tensor for each process. Args: tensor: the resulted tensor on this process. tensor_list: The list of tensors to be reduced and scattered. group_name: the name of the collective group. op: The reduce operation. Returns: None """ _check_single_tensor_input(tensor) _check_tensor_list_input(tensor_list) g = _check_and_get_group(group_name) if len(tensor_list) != g.world_size: raise RuntimeError( "The length of the tensor list operands to reducescatter " "must not be equal to world_size." ) opts = types.ReduceScatterOptions() opts.reduceOp = op g.reducescatter([tensor], [tensor_list], opts)
[docs] def reducescatter_multigpu( output_tensor_list, input_tensor_lists, group_name: str = "default", op=types.ReduceOp.SUM, ): """Reducescatter a list of tensors across all GPUs. Args: output_tensor_list: the resulted list of tensors, with shape: num_gpus * shape(tensor). input_tensor_lists: the original tensors, with shape: num_gpus * world_size * shape(tensor). group_name: the name of the collective group. op: The reduce operation. Returns: None. """ if not types.cupy_available(): raise RuntimeError("Multigpu calls requires NCCL and Cupy.") _check_tensor_lists_input(input_tensor_lists) _check_tensor_list_input(output_tensor_list) g = _check_and_get_group(group_name) opts = types.ReduceScatterOptions() opts.reduceOp = op g.reducescatter(output_tensor_list, input_tensor_lists, opts)
[docs] def send(tensor, dst_rank: int, group_name: str = "default"): """Send a tensor to a remote process synchronously. Args: tensor: the tensor to send. dst_rank: the rank of the destination process. group_name: the name of the collective group. Returns: None """ _check_single_tensor_input(tensor) g = _check_and_get_group(group_name) _check_rank_valid(g, dst_rank) if dst_rank == g.rank: raise RuntimeError("The destination rank '{}' is self.".format(dst_rank)) opts = types.SendOptions() opts.dst_rank = dst_rank g.send([tensor], opts)
[docs] def send_multigpu( tensor, dst_rank: int, dst_gpu_index: int, group_name: str = "default", n_elements: int = 0, ): """Send a tensor to a remote GPU synchronously. The function asssume each process owns >1 GPUs, and the sender process and receiver process has equal nubmer of GPUs. Args: tensor: the tensor to send, located on a GPU. dst_rank: the rank of the destination process. dst_gpu_index: the destination gpu index. group_name: the name of the collective group. n_elements: if specified, send the next n elements from the starting address of tensor. Returns: None """ if not types.cupy_available(): raise RuntimeError("send_multigpu call requires NCCL.") _check_single_tensor_input(tensor) g = _check_and_get_group(group_name) _check_rank_valid(g, dst_rank) if dst_rank == g.rank: raise RuntimeError( "The dst_rank '{}' is self. Considering " "doing GPU to GPU memcpy instead?".format(dst_rank) ) if n_elements < 0: raise RuntimeError("The n_elements '{}' should >= 0.".format(n_elements)) opts = types.SendOptions() opts.dst_rank = dst_rank opts.dst_gpu_index = dst_gpu_index opts.n_elements = n_elements g.send([tensor], opts)
[docs] def recv(tensor, src_rank: int, group_name: str = "default"): """Receive a tensor from a remote process synchronously. Args: tensor: the received tensor. src_rank: the rank of the source process. group_name: the name of the collective group. Returns: None """ _check_single_tensor_input(tensor) g = _check_and_get_group(group_name) _check_rank_valid(g, src_rank) if src_rank == g.rank: raise RuntimeError("The destination rank '{}' is self.".format(src_rank)) opts = types.RecvOptions() opts.src_rank = src_rank g.recv([tensor], opts)
[docs] def recv_multigpu( tensor, src_rank: int, src_gpu_index: int, group_name: str = "default", n_elements: int = 0, ): """Receive a tensor from a remote GPU synchronously. The function asssume each process owns >1 GPUs, and the sender process and receiver process has equal nubmer of GPUs. Args: tensor: the received tensor, located on a GPU. src_rank: the rank of the source process. src_gpu_index (int): the index of the source gpu on the src process. group_name: the name of the collective group. Returns: None """ if not types.cupy_available(): raise RuntimeError("recv_multigpu call requires NCCL.") _check_single_tensor_input(tensor) g = _check_and_get_group(group_name) _check_rank_valid(g, src_rank) if src_rank == g.rank: raise RuntimeError( "The dst_rank '{}' is self. Considering " "doing GPU to GPU memcpy instead?".format(src_rank) ) if n_elements < 0: raise RuntimeError("The n_elements '{}' should be >= 0.".format(n_elements)) opts = types.RecvOptions() opts.src_rank = src_rank opts.src_gpu_index = src_gpu_index opts.n_elements = n_elements g.recv([tensor], opts)
[docs] def synchronize(gpu_id: int): """Synchronize the current process to a give device. Args: gpu_id: the GPU device id to synchronize. Returns: None """ if not types.cupy_available(): raise RuntimeError("synchronize call requires CUDA and NCCL.") import cupy as cp cp.cuda.Device(gpu_id).synchronize()
def _check_and_get_group(group_name): """Check the existence and return the group handle.""" _check_inside_actor() global _group_mgr if not is_group_initialized(group_name): # try loading from remote info store try: # if the information is stored in an Info object, # get and create the group. name = "info_" + group_name mgr = ray.get_actor(name=name) ids, world_size, rank, backend = ray.get(mgr.get_info.remote()) worker = ray._private.worker.global_worker id_ = worker.core_worker.get_actor_id() r = rank[ids.index(id_)] _group_mgr.create_collective_group(backend, world_size, r, group_name) except ValueError as exc: # check if this group is initialized using options() if ( "collective_group_name" in os.environ and os.environ["collective_group_name"] == group_name ): rank = int(os.environ["collective_rank"]) world_size = int(os.environ["collective_world_size"]) backend = os.environ["collective_backend"] _group_mgr.create_collective_group( backend, world_size, rank, group_name ) else: raise RuntimeError( "The collective group '{}' is not " "initialized in the process.".format(group_name) ) from exc g = _group_mgr.get_group_by_name(group_name) return g def _check_single_tensor_input(tensor): """Check if the tensor is with a supported type.""" if isinstance(tensor, np.ndarray): return if types.cupy_available(): if isinstance(tensor, types.cp.ndarray): return if types.torch_available(): if isinstance(tensor, types.th.Tensor): return raise RuntimeError( "Unrecognized tensor type '{}'. Supported types are: " "np.ndarray, torch.Tensor, cupy.ndarray.".format(type(tensor)) ) def _check_backend_availability(backend: types.Backend): """Check whether the backend is available.""" if backend == types.Backend.GLOO: if not gloo_available(): raise RuntimeError("GLOO is not available.") elif backend == types.Backend.NCCL: if not nccl_available(): raise RuntimeError("NCCL is not available.") def _check_inside_actor(): """Check if currently it is inside a Ray actor/task.""" worker = ray._private.worker.global_worker if worker.mode == ray.WORKER_MODE: return else: raise RuntimeError( "The collective APIs shall be only used inside a Ray actor or task." ) def _check_rank_valid(g, rank: int): """Check the rank: 0 <= rank < world_size.""" if rank < 0: raise ValueError("rank '{}' is negative.".format(rank)) if rank >= g.world_size: raise ValueError( "rank '{}' must be less than world size '{}'".format(rank, g.world_size) ) def _check_tensor_list_input(tensor_list): """Check if the input is a list of supported tensor types.""" if not isinstance(tensor_list, list): raise RuntimeError( "The input must be a list of tensors. " "Got '{}'.".format(type(tensor_list)) ) if not tensor_list: raise RuntimeError("Got an empty list of tensors.") for t in tensor_list: _check_single_tensor_input(t) def _check_tensor_lists_input(tensor_lists): """Check if the input is a list of lists of supported tensor types.""" if not isinstance(tensor_lists, list): raise RuntimeError( "The input must be a list of lists of tensors. " "Got '{}'.".format(type(tensor_lists)) ) if not tensor_lists: raise RuntimeError(f"Did not receive tensors. Got: {tensor_lists}") for t in tensor_lists: _check_tensor_list_input(t) def _check_root_tensor_valid(length, root_tensor): """Check the root_tensor device is 0 <= root_tensor < length""" if root_tensor < 0: raise ValueError("root_tensor '{}' is negative.".format(root_tensor)) if root_tensor >= length: raise ValueError( "root_tensor '{}' is greater than the number of GPUs: " "'{}'".format(root_tensor, length) )