import copy
import glob
import inspect
import logging
import os
import threading
import time
from collections import defaultdict
from datetime import datetime
from numbers import Number
from threading import Thread
from typing import Any, Callable, Dict, List, Optional, Sequence, Type, Union
import numpy as np
import ray
from ray._private.dict import ( # noqa: F401
deep_update,
flatten_dict,
merge_dicts,
unflatten_dict,
unflatten_list_dict,
unflattened_lookup,
)
from ray.air._internal.json import SafeFallbackEncoder # noqa
from ray.air._internal.util import is_nan, is_nan_or_inf # noqa: F401
from ray.util.annotations import DeveloperAPI, PublicAPI
import psutil
logger = logging.getLogger(__name__)
def _import_gputil():
try:
import GPUtil
except ImportError:
GPUtil = None
return GPUtil
START_OF_TIME = time.time()
@DeveloperAPI
class UtilMonitor(Thread):
"""Class for system usage utilization monitoring.
It keeps track of CPU, RAM, GPU, VRAM usage (each gpu separately) by
pinging for information every x seconds in a separate thread.
Requires psutil and GPUtil to be installed. Can be enabled with
Tuner(param_space={"log_sys_usage": True}).
"""
def __init__(self, start=True, delay=0.7):
self.stopped = True
GPUtil = _import_gputil()
self.GPUtil = GPUtil
if GPUtil is None and start:
logger.warning("Install gputil for GPU system monitoring.")
if psutil is None and start:
logger.warning("Install psutil to monitor system performance.")
if GPUtil is None and psutil is None:
return
super(UtilMonitor, self).__init__()
self.delay = delay # Time between calls to GPUtil
self.values = defaultdict(list)
self.lock = threading.Lock()
self.daemon = True
if start:
self.start()
def _read_utilization(self):
with self.lock:
if psutil is not None:
self.values["cpu_util_percent"].append(
float(psutil.cpu_percent(interval=None))
)
self.values["ram_util_percent"].append(
float(getattr(psutil.virtual_memory(), "percent"))
)
if self.GPUtil is not None:
gpu_list = []
try:
gpu_list = self.GPUtil.getGPUs()
except Exception:
logger.debug("GPUtil failed to retrieve GPUs.")
for gpu in gpu_list:
self.values["gpu_util_percent" + str(gpu.id)].append(
float(gpu.load)
)
self.values["vram_util_percent" + str(gpu.id)].append(
float(gpu.memoryUtil)
)
def get_data(self):
if self.stopped:
return {}
with self.lock:
ret_values = copy.deepcopy(self.values)
for key, val in self.values.items():
del val[:]
return {"perf": {k: np.mean(v) for k, v in ret_values.items() if len(v) > 0}}
def run(self):
self.stopped = False
while not self.stopped:
self._read_utilization()
time.sleep(self.delay)
def stop(self):
self.stopped = True
@DeveloperAPI
def retry_fn(
fn: Callable[[], Any],
exception_type: Union[Type[Exception], Sequence[Type[Exception]]] = Exception,
num_retries: int = 3,
sleep_time: int = 1,
timeout: Optional[Number] = None,
) -> bool:
errored = threading.Event()
def _try_fn():
try:
fn()
except exception_type as e:
logger.warning(e)
errored.set()
for i in range(num_retries):
errored.clear()
proc = threading.Thread(target=_try_fn)
proc.daemon = True
proc.start()
proc.join(timeout=timeout)
if proc.is_alive():
logger.debug(
f"Process timed out (try {i+1}/{num_retries}): "
f"{getattr(fn, '__name__', None)}"
)
elif not errored.is_set():
return True
# Timed out, sleep and try again
time.sleep(sleep_time)
# Timed out, so return False
return False
@DeveloperAPI
class warn_if_slow:
"""Prints a warning if a given operation is slower than 500ms.
Example:
>>> from ray.tune.utils.util import warn_if_slow
>>> something = ... # doctest: +SKIP
>>> with warn_if_slow("some_operation"): # doctest: +SKIP
... ray.get(something) # doctest: +SKIP
"""
DEFAULT_THRESHOLD = float(os.environ.get("TUNE_WARN_THRESHOLD_S", 0.5))
DEFAULT_MESSAGE = (
"The `{name}` operation took {duration:.3f} s, "
"which may be a performance bottleneck."
)
def __init__(
self,
name: str,
threshold: Optional[float] = None,
message: Optional[str] = None,
disable: bool = False,
):
self.name = name
self.threshold = threshold or self.DEFAULT_THRESHOLD
self.message = message or self.DEFAULT_MESSAGE
self.too_slow = False
self.disable = disable
def __enter__(self):
self.start = time.time()
return self
def __exit__(self, type, value, traceback):
now = time.time()
if self.disable:
return
if now - self.start > self.threshold and now - START_OF_TIME > 60.0:
self.too_slow = True
duration = now - self.start
logger.warning(self.message.format(name=self.name, duration=duration))
@DeveloperAPI
class Tee(object):
def __init__(self, stream1, stream2):
self.stream1 = stream1
self.stream2 = stream2
# If True, we are currently handling a warning.
# We use this flag to avoid infinite recursion.
self._handling_warning = False
def _warn(self, op, s, args, kwargs):
# If we are already handling a warning, this is because
# `logger.warning` below triggered the same object again
# (e.g. because stderr is redirected to this object).
# In that case, exit early to avoid recursion.
if self._handling_warning:
return
msg = f"ValueError when calling '{op}' on stream ({s}). "
msg += f"args: {args} kwargs: {kwargs}"
self._handling_warning = True
logger.warning(msg)
self._handling_warning = False
def seek(self, *args, **kwargs):
for s in [self.stream1, self.stream2]:
try:
s.seek(*args, **kwargs)
except ValueError:
self._warn("seek", s, args, kwargs)
def write(self, *args, **kwargs):
for s in [self.stream1, self.stream2]:
try:
s.write(*args, **kwargs)
except ValueError:
self._warn("write", s, args, kwargs)
def flush(self, *args, **kwargs):
for s in [self.stream1, self.stream2]:
try:
s.flush(*args, **kwargs)
except ValueError:
self._warn("flush", s, args, kwargs)
@property
def encoding(self):
if hasattr(self.stream1, "encoding"):
return self.stream1.encoding
return self.stream2.encoding
@property
def error(self):
if hasattr(self.stream1, "error"):
return self.stream1.error
return self.stream2.error
@property
def newlines(self):
if hasattr(self.stream1, "newlines"):
return self.stream1.newlines
return self.stream2.newlines
def detach(self):
raise NotImplementedError
def read(self, *args, **kwargs):
raise NotImplementedError
def readline(self, *args, **kwargs):
raise NotImplementedError
def tell(self, *args, **kwargs):
raise NotImplementedError
@DeveloperAPI
def date_str():
return datetime.today().strftime("%Y-%m-%d_%H-%M-%S")
def _to_pinnable(obj):
"""Converts obj to a form that can be pinned in object store memory.
Currently only numpy arrays are pinned in memory, if you have a strong
reference to the array value.
"""
return (obj, np.zeros(1))
def _from_pinnable(obj):
"""Retrieve from _to_pinnable format."""
return obj[0]
[docs]@DeveloperAPI
def diagnose_serialization(trainable: Callable):
"""Utility for detecting why your trainable function isn't serializing.
Args:
trainable: The trainable object passed to
tune.Tuner(trainable). Currently only supports
Function API.
Returns:
bool | set of unserializable objects.
Example:
.. code-block:: python
import threading
# this is not serializable
e = threading.Event()
def test():
print(e)
diagnose_serialization(test)
# should help identify that 'e' should be moved into
# the `test` scope.
# correct implementation
def test():
e = threading.Event()
print(e)
assert diagnose_serialization(test) is True
"""
from ray.tune.registry import _check_serializability, register_trainable
def check_variables(objects, failure_set, printer):
for var_name, variable in objects.items():
msg = None
try:
_check_serializability(var_name, variable)
status = "PASSED"
except Exception as e:
status = "FAILED"
msg = f"{e.__class__.__name__}: {str(e)}"
failure_set.add(var_name)
printer(f"{str(variable)}[name='{var_name}'']... {status}")
if msg:
printer(msg)
print(f"Trying to serialize {trainable}...")
try:
register_trainable("__test:" + str(trainable), trainable, warn=False)
print("Serialization succeeded!")
return True
except Exception as e:
print(f"Serialization failed: {e}")
print(
"Inspecting the scope of the trainable by running "
f"`inspect.getclosurevars({str(trainable)})`..."
)
closure = inspect.getclosurevars(trainable)
failure_set = set()
if closure.globals:
print(
f"Detected {len(closure.globals)} global variables. "
"Checking serializability..."
)
check_variables(closure.globals, failure_set, lambda s: print(" " + s))
if closure.nonlocals:
print(
f"Detected {len(closure.nonlocals)} nonlocal variables. "
"Checking serializability..."
)
check_variables(closure.nonlocals, failure_set, lambda s: print(" " + s))
if not failure_set:
print(
"Nothing was found to have failed the diagnostic test, though "
"serialization did not succeed. Feel free to raise an "
"issue on github."
)
return failure_set
else:
print(
f"Variable(s) {failure_set} was found to be non-serializable. "
"Consider either removing the instantiation/imports "
"of these objects or moving them into the scope of "
"the trainable. "
)
return failure_set
def _atomic_save(state: Dict, checkpoint_dir: str, file_name: str, tmp_file_name: str):
"""Atomically saves the state object to the checkpoint directory.
This is automatically used by Tuner().fit during a Tune job.
Args:
state: Object state to be serialized.
checkpoint_dir: Directory location for the checkpoint.
file_name: Final name of file.
tmp_file_name: Temporary name of file.
"""
import ray.cloudpickle as cloudpickle
tmp_search_ckpt_path = os.path.join(checkpoint_dir, tmp_file_name)
with open(tmp_search_ckpt_path, "wb") as f:
cloudpickle.dump(state, f)
os.replace(tmp_search_ckpt_path, os.path.join(checkpoint_dir, file_name))
def _load_newest_checkpoint(dirpath: str, ckpt_pattern: str) -> Optional[Dict]:
"""Returns the most recently modified checkpoint.
Assumes files are saved with an ordered name, most likely by
:obj:atomic_save.
Args:
dirpath: Directory in which to look for the checkpoint file.
ckpt_pattern: File name pattern to match to find checkpoint
files.
Returns:
(dict) Deserialized state dict.
"""
import ray.cloudpickle as cloudpickle
full_paths = glob.glob(os.path.join(dirpath, ckpt_pattern))
if not full_paths:
return
most_recent_checkpoint = max(full_paths)
with open(most_recent_checkpoint, "rb") as f:
checkpoint_state = cloudpickle.load(f)
return checkpoint_state
[docs]@PublicAPI(stability="beta")
def wait_for_gpu(
gpu_id: Optional[Union[int, str]] = None,
target_util: float = 0.01,
retry: int = 20,
delay_s: int = 5,
gpu_memory_limit: Optional[float] = None,
):
"""Checks if a given GPU has freed memory.
Requires ``gputil`` to be installed: ``pip install gputil``.
Args:
gpu_id: GPU id or uuid to check.
Must be found within GPUtil.getGPUs(). If none, resorts to
the first item returned from `ray.get_gpu_ids()`.
target_util: The utilization threshold to reach to unblock.
Set this to 0 to block until the GPU is completely free.
retry: Number of times to check GPU limit. Sleeps `delay_s`
seconds between checks.
delay_s: Seconds to wait before check.
Returns:
bool: True if free.
Raises:
RuntimeError: If GPUtil is not found, if no GPUs are detected
or if the check fails.
Example:
.. code-block:: python
def tune_func(config):
tune.utils.wait_for_gpu()
train()
tuner = tune.Tuner(
tune.with_resources(
tune_func,
resources={"gpu": 1}
),
tune_config=tune.TuneConfig(num_samples=10)
)
tuner.fit()
"""
GPUtil = _import_gputil()
if GPUtil is None:
raise RuntimeError("GPUtil must be installed if calling `wait_for_gpu`.")
if gpu_id is None:
gpu_id_list = ray.get_gpu_ids()
if not gpu_id_list:
raise RuntimeError(
"No GPU ids found from `ray.get_gpu_ids()`. "
"Did you set Tune resources correctly?"
)
gpu_id = gpu_id_list[0]
gpu_attr = "id"
if isinstance(gpu_id, str):
if gpu_id.isdigit():
# GPU ID returned from `ray.get_gpu_ids()` is a str representation
# of the int GPU ID
gpu_id = int(gpu_id)
else:
# Could not coerce gpu_id to int, so assume UUID
# and compare against `uuid` attribute e.g.,
# 'GPU-04546190-b68d-65ac-101b-035f8faed77d'
gpu_attr = "uuid"
elif not isinstance(gpu_id, int):
raise ValueError(f"gpu_id ({type(gpu_id)}) must be type str/int.")
def gpu_id_fn(g):
# Returns either `g.id` or `g.uuid` depending on
# the format of the input `gpu_id`
return getattr(g, gpu_attr)
gpu_ids = {gpu_id_fn(g) for g in GPUtil.getGPUs()}
if gpu_id not in gpu_ids:
raise ValueError(
f"{gpu_id} not found in set of available GPUs: {gpu_ids}. "
"`wait_for_gpu` takes either GPU ordinal ID (e.g., '0') or "
"UUID (e.g., 'GPU-04546190-b68d-65ac-101b-035f8faed77d')."
)
for i in range(int(retry)):
gpu_object = next(g for g in GPUtil.getGPUs() if gpu_id_fn(g) == gpu_id)
if gpu_object.memoryUtil > target_util:
logger.info(
f"Waiting for GPU util to reach {target_util}. "
f"Util: {gpu_object.memoryUtil:0.3f}"
)
time.sleep(delay_s)
else:
return True
raise RuntimeError("GPU memory was not freed.")
[docs]@DeveloperAPI
def validate_save_restore(
trainable_cls: Type,
config: Optional[Dict] = None,
num_gpus: int = 0,
):
"""Helper method to check if your Trainable class will resume correctly.
Args:
trainable_cls: Trainable class for evaluation.
config: Config to pass to Trainable when testing.
num_gpus: GPU resources to allocate when testing.
use_object_store: Whether to save and restore to Ray's object
store. Recommended to set this to True if planning to use
algorithms that pause training (i.e., PBT, HyperBand).
"""
assert ray.is_initialized(), "Need Ray to be initialized."
remote_cls = ray.remote(num_gpus=num_gpus)(trainable_cls)
trainable_1 = remote_cls.remote(config=config)
trainable_2 = remote_cls.remote(config=config)
from ray.air.constants import TRAINING_ITERATION
for _ in range(3):
res = ray.get(trainable_1.train.remote())
assert res.get(TRAINING_ITERATION), (
"Validation will not pass because it requires `training_iteration` "
"to be returned."
)
ray.get(trainable_2.restore.remote(trainable_1.save.remote()))
res = ray.get(trainable_2.train.remote())
assert res[TRAINING_ITERATION] == 4
res = ray.get(trainable_2.train.remote())
assert res[TRAINING_ITERATION] == 5
return True
def _detect_config_single(func):
"""Check if func({}) works."""
func_sig = inspect.signature(func)
use_config_single = True
try:
func_sig.bind({})
except Exception as e:
logger.debug(str(e))
use_config_single = False
return use_config_single
@PublicAPI()
def validate_warmstart(
parameter_names: List[str],
points_to_evaluate: List[Union[List, Dict]],
evaluated_rewards: List,
validate_point_name_lengths: bool = True,
):
"""Generic validation of a Searcher's warm start functionality.
Raises exceptions in case of type and length mismatches between
parameters.
If ``validate_point_name_lengths`` is False, the equality of lengths
between ``points_to_evaluate`` and ``parameter_names`` will not be
validated.
"""
if points_to_evaluate:
if not isinstance(points_to_evaluate, list):
raise TypeError(
"points_to_evaluate expected to be a list, got {}.".format(
type(points_to_evaluate)
)
)
for point in points_to_evaluate:
if not isinstance(point, (dict, list)):
raise TypeError(
f"points_to_evaluate expected to include list or dict, "
f"got {point}."
)
if validate_point_name_lengths and (not len(point) == len(parameter_names)):
raise ValueError(
"Dim of point {}".format(point)
+ " and parameter_names {}".format(parameter_names)
+ " do not match."
)
if points_to_evaluate and evaluated_rewards:
if not isinstance(evaluated_rewards, list):
raise TypeError(
"evaluated_rewards expected to be a list, got {}.".format(
type(evaluated_rewards)
)
)
if not len(evaluated_rewards) == len(points_to_evaluate):
raise ValueError(
"Dim of evaluated_rewards {}".format(evaluated_rewards)
+ " and points_to_evaluate {}".format(points_to_evaluate)
+ " do not match."
)