"""This example demonstrates basic Ray Tune random search and grid search."""
import time
import ray
from ray import train, tune
def evaluation_fn(step, width, height):
time.sleep(0.1)
return (0.1 + width * step / 100) ** (-1) + height * 0.1
def easy_objective(config):
# Hyperparameters
width, height = config["width"], config["height"]
for step in range(config["steps"]):
# Iterative training function - can be any arbitrary training procedure
intermediate_score = evaluation_fn(step, width, height)
# Feed the score back back to Tune.
train.report({"iterations": step, "mean_loss": intermediate_score})
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--smoke-test", action="store_true", help="Finish quickly for testing"
)
args, _ = parser.parse_known_args()
ray.init(configure_logging=False)
# This will do a grid search over the `activation` parameter. This means
# that each of the two values (`relu` and `tanh`) will be sampled once
# for each sample (`num_samples`). We end up with 2 * 50 = 100 samples.
# The `width` and `height` parameters are sampled randomly.
# `steps` is a constant parameter.
tuner = tune.Tuner(
easy_objective,
tune_config=tune.TuneConfig(
metric="mean_loss",
mode="min",
num_samples=5 if args.smoke_test else 50,
),
param_space={
"steps": 5 if args.smoke_test else 100,
"width": tune.uniform(0, 20),
"height": tune.uniform(-100, 100),
"activation": tune.grid_search(["relu", "tanh"]),
},
)
results = tuner.fit()
print("Best hyperparameters found were: ", results.get_best_result().config)