"""This example demonstrates the usage of conditional search spaces with Tune.
It also checks that it is usable with a separate scheduler.
Requires the HyperOpt library to be installed (`pip install hyperopt`).
For an example of using a Tune search space, see
:doc:`/tune/examples/hyperopt_example`.
"""
import time
from hyperopt import hp
import ray
from ray import tune
from ray.tune.schedulers import AsyncHyperBandScheduler
from ray.tune.search import ConcurrencyLimiter
from ray.tune.search.hyperopt import HyperOptSearch
def f_unpack_dict(dct):
"""
Unpacks all sub-dictionaries in given dictionary recursively.
There should be no duplicated keys across all nested
subdictionaries, or some instances will be lost without warning
Source: https://www.kaggle.com/fanvacoolt/tutorial-on-hyperopt
Parameters:
----------------
dct : dictionary to unpack
Returns:
----------------
: unpacked dictionary
"""
res = {}
for k, v in dct.items():
if isinstance(v, dict):
res = {**res, **f_unpack_dict(v)}
else:
res[k] = v
return res
def evaluation_fn(step, width, height, mult=1):
return (0.1 + width * step / 100) ** (-1) + height * 0.1 * mult
def easy_objective(config_in):
# Hyperparameters
config = f_unpack_dict(config_in)
width, height, mult = config["width"], config["height"], config.get("mult", 1)
print(config)
for step in range(config["steps"]):
# Iterative training function - can be any arbitrary training procedure
intermediate_score = evaluation_fn(step, width, height, mult)
# Feed the score back back to Tune.
tune.report({"iterations": step, "mean_loss": intermediate_score})
time.sleep(0.1)
config_space = {
"activation": hp.choice(
"activation",
[
{"activation": "relu", "mult": hp.uniform("mult", 1, 2)},
{"activation": "tanh"},
],
),
"width": hp.uniform("width", 0, 20),
"height": hp.uniform("heright", -100, 100),
"steps": 100,
}
def run_hyperopt_tune(config_dict=config_space, smoke_test=False):
algo = HyperOptSearch(space=config_dict, metric="mean_loss", mode="min")
algo = ConcurrencyLimiter(algo, max_concurrent=4)
scheduler = AsyncHyperBandScheduler()
tuner = tune.Tuner(
easy_objective,
tune_config=tune.TuneConfig(
metric="mean_loss",
mode="min",
search_alg=algo,
scheduler=scheduler,
num_samples=10 if smoke_test else 100,
),
)
results = tuner.fit()
print("Best hyperparameters found were: ", results.get_best_result().config)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--smoke-test", action="store_true", help="Finish quickly for testing"
)
args, _ = parser.parse_known_args()
ray.init(configure_logging=False)
run_hyperopt_tune(smoke_test=args.smoke_test)