"""This example demonstrates the usage of BayesOpt with Ray Tune.
It also checks that it is usable with a separate scheduler.
Requires the BayesOpt library to be installed (`pip install bayesian-optimization`).
"""
import time
from ray import train, tune
from ray.tune.schedulers import AsyncHyperBandScheduler
from ray.tune.search import ConcurrencyLimiter
from ray.tune.search.bayesopt import BayesOptSearch
def evaluation_fn(step, width, height):
return (0.1 + width * step / 100) ** (-1) + height * 0.1
def easy_objective(config):
# Hyperparameters
width, height = config["width"], config["height"]
for step in range(config["steps"]):
# Iterative training function - can be any arbitrary training procedure
intermediate_score = evaluation_fn(step, width, height)
# Feed the score back back to Tune.
train.report({"iterations": step, "mean_loss": intermediate_score})
time.sleep(0.1)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--smoke-test", action="store_true", help="Finish quickly for testing"
)
args, _ = parser.parse_known_args()
algo = BayesOptSearch(utility_kwargs={"kind": "ucb", "kappa": 2.5, "xi": 0.0})
algo = ConcurrencyLimiter(algo, max_concurrent=4)
scheduler = AsyncHyperBandScheduler()
tuner = tune.Tuner(
easy_objective,
tune_config=tune.TuneConfig(
metric="mean_loss",
mode="min",
search_alg=algo,
scheduler=scheduler,
num_samples=10 if args.smoke_test else 1000,
),
run_config=train.RunConfig(
name="my_exp",
),
param_space={
"steps": 100,
"width": tune.uniform(0, 20),
"height": tune.uniform(-100, 100),
},
)
results = tuner.fit()
print("Best hyperparameters found were: ", results.get_best_result().config)