Tune Console Output (Reporters)#
By default, Tune reports experiment progress periodically to the command-line as follows.
== Status ==
Memory usage on this node: 11.4/16.0 GiB
Using FIFO scheduling algorithm.
Resources requested: 4/12 CPUs, 0/0 GPUs, 0.0/3.17 GiB heap, 0.0/1.07 GiB objects
Result logdir: /Users/foo/ray_results/myexp
Number of trials: 4 (4 RUNNING)
+----------------------+----------+---------------------+-----------+--------+--------+--------+--------+------------------+-------+
| Trial name | status | loc | param1 | param2 | param3 | acc | loss | total time (s) | iter |
|----------------------+----------+---------------------+-----------+--------+--------+--------+--------+------------------+-------|
| MyTrainable_a826033a | RUNNING | 10.234.98.164:31115 | 0.303706 | 0.0761 | 0.4328 | 0.1289 | 1.8572 | 7.54952 | 15 |
| MyTrainable_a8263fc6 | RUNNING | 10.234.98.164:31117 | 0.929276 | 0.158 | 0.3417 | 0.4865 | 1.6307 | 7.0501 | 14 |
| MyTrainable_a8267914 | RUNNING | 10.234.98.164:31111 | 0.068426 | 0.0319 | 0.1147 | 0.9585 | 1.9603 | 7.0477 | 14 |
| MyTrainable_a826b7bc | RUNNING | 10.234.98.164:31112 | 0.729127 | 0.0748 | 0.1784 | 0.1797 | 1.7161 | 7.05715 | 14 |
+----------------------+----------+---------------------+-----------+--------+--------+--------+--------+------------------+-------+
Note that columns will be hidden if they are completely empty. The output can be configured in various ways by
instantiating a CLIReporter
instance (or JupyterNotebookReporter
if you’re using jupyter notebook).
Here’s an example:
from ray.train import RunConfig
from ray.tune import CLIReporter
# Limit the number of rows.
reporter = CLIReporter(max_progress_rows=10)
# Add a custom metric column, in addition to the default metrics.
# Note that this must be a metric that is returned in your training results.
reporter.add_metric_column("custom_metric")
tuner = tune.Tuner(my_trainable, run_config=RunConfig(progress_reporter=reporter))
results = tuner.fit()
Extending CLIReporter
lets you control reporting frequency. For example:
from ray.tune.experiment.trial import Trial
class ExperimentTerminationReporter(CLIReporter):
def should_report(self, trials, done=False):
"""Reports only on experiment termination."""
return done
tuner = tune.Tuner(my_trainable, run_config=RunConfig(progress_reporter=ExperimentTerminationReporter()))
results = tuner.fit()
class TrialTerminationReporter(CLIReporter):
def __init__(self):
super(TrialTerminationReporter, self).__init__()
self.num_terminated = 0
def should_report(self, trials, done=False):
"""Reports only on trial termination events."""
old_num_terminated = self.num_terminated
self.num_terminated = len([t for t in trials if t.status == Trial.TERMINATED])
return self.num_terminated > old_num_terminated
tuner = tune.Tuner(my_trainable, run_config=RunConfig(progress_reporter=TrialTerminationReporter()))
results = tuner.fit()
The default reporting style can also be overridden more broadly by extending the ProgressReporter
interface directly. Note that you can print to any output stream, file etc.
from ray.tune import ProgressReporter
class CustomReporter(ProgressReporter):
def should_report(self, trials, done=False):
return True
def report(self, trials, *sys_info):
print(*sys_info)
print("\n".join([str(trial) for trial in trials]))
tuner = tune.Tuner(my_trainable, run_config=RunConfig(progress_reporter=CustomReporter()))
results = tuner.fit()
Reporter Interface (tune.ProgressReporter)#
Abstract class for experiment progress reporting. |
Reports progress across trials. |
|
Returns whether or not progress should be reported. |
Tune Built-in Reporters#
Command-line reporter |
|
Jupyter notebook-friendly Reporter that can update display in-place. |