ray.tune.search.Searcher.save#

Searcher.save(checkpoint_path: str)[source]#

Save state to path for this search algorithm.

Parameters:

checkpoint_path – File where the search algorithm state is saved. This path should be used later when restoring from file.

Example:

search_alg = Searcher(...)

tuner = tune.Tuner(
    cost,
    tune_config=tune.TuneConfig(
        search_alg=search_alg,
        num_samples=5
    ),
    param_space=config
)
results = tuner.fit()

search_alg.save("./my_favorite_path.pkl")

Changed in version 0.8.7: Save is automatically called by Tuner().fit(). You can use Tuner().restore() to restore from an experiment directory such as ~/ray_results/trainable.