ray.tune.search.Searcher.save#
- Searcher.save(checkpoint_path: str)[source]#
Save state to path for this search algorithm.
- Parameters:
checkpoint_path – File where the search algorithm state is saved. This path should be used later when restoring from file.
Example:
search_alg = Searcher(...) tuner = tune.Tuner( cost, tune_config=tune.TuneConfig( search_alg=search_alg, num_samples=5 ), param_space=config ) results = tuner.fit() search_alg.save("./my_favorite_path.pkl")
Changed in version 0.8.7: Save is automatically called by
Tuner().fit()
. You can useTuner().restore()
to restore from an experiment directory such as~/ray_results/trainable
.