ray.tune.search.Searcher.restore#

Searcher.restore(checkpoint_path: str)[source]#

Restore state for this search algorithm

Parameters:

checkpoint_path – File where the search algorithm state is saved. This path should be the same as the one provided to “save”.

Example:

search_alg.save("./my_favorite_path.pkl")

search_alg2 = Searcher(...)
search_alg2 = ConcurrencyLimiter(search_alg2, 1)
search_alg2.restore(checkpoint_path)
tuner = tune.Tuner(
    cost,
    tune_config=tune.TuneConfig(
        search_alg=search_alg2,
        num_samples=5
    ),
)
tuner.fit()