Toggle navigation sidebar
Toggle in-page Table of Contents
Ray 2.5.0
Welcome to Ray!
Ray
Overview
Getting Started Guide
Installation
Use Cases
Ecosystem
Ray Core
Ray AI Runtime (AIR)
Ray Data
Ray Train
Ray Tune
Getting Started
Key Concepts
User Guides
Ray Tune Examples
Ray Tune FAQ
Ray Tune API
Tune Execution (tune.Tuner)
Tune Experiment Results (tune.ResultGrid)
Training in Tune (tune.Trainable, session.report)
Tune Search Space API
Tune Search Algorithms (tune.search)
Tune Trial Schedulers (tune.schedulers)
Tune Stopping Mechanisms (tune.stopper)
Tune Console Output (Reporters)
Syncing in Tune (tune.SyncConfig, tune.Syncer)
Tune Loggers (tune.logger)
Tune Callbacks (tune.Callback)
ray.tune.Callback
ray.tune.Callback.setup
ray.tune.Callback.on_checkpoint
ray.tune.Callback.on_experiment_end
ray.tune.Callback.on_step_begin
ray.tune.Callback.on_step_end
ray.tune.Callback.on_trial_complete
ray.tune.Callback.on_trial_error
ray.tune.Callback.on_trial_restore
ray.tune.Callback.on_trial_result
ray.tune.Callback.on_trial_save
ray.tune.Callback.on_trial_start
ray.tune.Callback.get_state
ray.tune.Callback.set_state
Environment variables used by Ray Tune
Tune Scikit-Learn API (tune.sklearn)
External library integrations for Ray Tune
Tune Internals
Tune Client API
Tune CLI (Experimental)
Ray Serve
Ray RLlib
More Libraries
Ray Clusters
Monitoring and Debugging
References
Developer Guides
repository
open issue
suggest edit
.rst
.pdf
ray.tune.Callback.__init__
ray.tune.Callback.__init__
#
Callback.
__init__
(
)
#