ray.train.context.TrainContext.get_node_rank#
- TrainContext.get_node_rank() int [source]#
Get the rank of this node.
Example
import ray from ray import train from ray.train import ScalingConfig from ray.train.torch import TorchTrainer def train_loop_per_worker(): print(train.get_context().get_node_rank()) train_dataset = ray.data.from_items( [{"x": x, "y": x + 1} for x in range(32)]) trainer = TorchTrainer(train_loop_per_worker, scaling_config=ScalingConfig(num_workers=1), datasets={"train": train_dataset}) trainer.fit()
PublicAPI (beta): This API is in beta and may change before becoming stable.