ray.train.context.TrainContext.get_local_world_size#
- TrainContext.get_local_world_size() int [source]#
Get the local world size of this node (i.e. number of workers on this node).
Example
import ray from ray import train from ray.train import ScalingConfig from ray.train.torch import TorchTrainer def train_loop_per_worker(): print(train.get_context().get_local_world_size()) train_dataset = ray.data.from_items( [{"x": x, "y": x + 1} for x in range(32)]) trainer = TorchTrainer(train_loop_per_worker, scaling_config=ScalingConfig(num_workers=1), datasets={"train": train_dataset}) trainer.fit()
PublicAPI (beta): This API is in beta and may change before becoming stable.