ray.rllib.core.learner.learner.Learner#
- class ray.rllib.core.learner.learner.Learner(*, config: AlgorithmConfig, module_spec: RLModuleSpec | MultiRLModuleSpec | None = None, module: RLModule | None = None)[source]#
Bases:
Checkpointable
Base class for Learners.
This class will be used to train RLModules. It is responsible for defining the loss function, and updating the neural network weights that it owns. It also provides a way to add/remove modules to/from RLModules in a multi-agent scenario, in the middle of training (This is useful for league based training).
TF and Torch specific implementation of this class fills in the framework-specific implementation details for distributed training, and for computing and applying gradients. User should not need to sub-class this class, but instead inherit from the TF or Torch specific sub-classes to implement their algorithm-specific update logic.
- Parameters:
config – The AlgorithmConfig object from which to derive most of the settings needed to build the Learner.
module_spec – The module specification for the RLModule that is being trained. If the module is a single agent module, after building the module it will be converted to a multi-agent module with a default key. Can be none if the module is provided directly via the
module
argument. Refer to ray.rllib.core.rl_module.RLModuleSpec or ray.rllib.core.rl_module.MultiRLModuleSpec for more info.module – If learner is being used stand-alone, the RLModule can be optionally passed in directly instead of the through the
module_spec
.
Note: We use PPO and torch as an example here because many of the showcased components need implementations to come together. However, the same pattern is generally applicable.
import gymnasium as gym from ray.rllib.algorithms.ppo.ppo import PPOConfig from ray.rllib.algorithms.ppo.ppo_catalog import PPOCatalog from ray.rllib.algorithms.ppo.torch.ppo_torch_rl_module import ( PPOTorchRLModule ) from ray.rllib.core import COMPONENT_RL_MODULE, DEFAULT_MODULE_ID from ray.rllib.core.rl_module.rl_module import RLModuleSpec env = gym.make("CartPole-v1") # Create a PPO config object first. config = ( PPOConfig() .framework("torch") .training(model={"fcnet_hiddens": [128, 128]}) ) # Create a learner instance directly from our config. All we need as # extra information here is the env to be able to extract space information # (needed to construct the RLModule inside the Learner). learner = config.build_learner(env=env) # Take one gradient update on the module and report the results. # results = learner.update(...) # Add a new module, perhaps for league based training. learner.add_module( module_id="new_player", module_spec=RLModuleSpec( module_class=PPOTorchRLModule, observation_space=env.observation_space, action_space=env.action_space, model_config_dict={"fcnet_hiddens": [64, 64]}, catalog_class=PPOCatalog, ) ) # Take another gradient update with both previous and new modules. # results = learner.update(...) # Remove a module. learner.remove_module("new_player") # Will train previous modules only. # results = learner.update(...) # Get the state of the learner. state = learner.get_state() # Set the state of the learner. learner.set_state(state) # Get the weights of the underlying MultiRLModule. weights = learner.get_state(components=COMPONENT_RL_MODULE) # Set the weights of the underlying MultiRLModule. learner.set_state({COMPONENT_RL_MODULE: weights})
Extension pattern:
from ray.rllib.core.learner.torch.torch_learner import TorchLearner class MyLearner(TorchLearner): def compute_losses(self, fwd_out, batch): # Compute the losses per module based on `batch` and output of the # forward pass (`fwd_out`). To access the (algorithm) config for a # specific RLModule, do: # `self.config.get_config_for_module([moduleID])`. return {DEFAULT_MODULE_ID: module_loss}
PublicAPI (alpha): This API is in alpha and may change before becoming stable.
Methods
Adds a module to the underlying MultiRLModule.
Called after gradient-based updates are completed.
Applies the gradients to the MultiRLModule parameters.
Called before gradient-based updates are completed.
Builds the Learner.
Computes the gradients based on the given losses.
Computes the loss for a single module.
Computes the loss(es) for the module being optimized.
Configures, creates, and registers the optimizers for this Learner.
Configures an optimizer for the given module_id.
Reduces the given ParamDict to contain only parameters for given optimizer.
Creates a new Checkpointable instance from the given location and returns it.
Returns JSON writable metadata further describing the implementing class.
Returns the optimizer object, configured under the given module_id and name.
Returns a list of (optimizer_name, optimizer instance)-tuples for module_id.
Returns a hashable reference to a trainable parameter.
Returns the list of parameters of a module.
Applies potential postprocessing operations on the gradients.
Applies postprocessing operations on the gradients of the given module.
Registers an optimizer with a ModuleID, name, param list and lr-scheduler.
Removes a module from the Learner.
Restores the state of the implementing class from the given path.
Saves the state of the implementing class (or
state
) topath
.Returns whether a module should be updated or not based on
self.config
.Do
num_iters
minibatch updates given a train batch.Do
num_iters
minibatch updates given a list of episodes.Attributes
Whether the learner is running in distributed mode.
The MultiRLModule that is being trained.