ray.data.grouped_data.GroupedData.std#
- GroupedData.std(on: str | List[str] = None, ddof: int = 1, ignore_nulls: bool = True) Dataset[source]#
Compute grouped standard deviation aggregation.
Examples
>>> import ray >>> ray.data.range(100).groupby("id").std(ddof=0) >>> ray.data.from_items([ ... {"A": i % 3, "B": i, "C": i**2} ... for i in range(100)]) ... .groupby("A") ... .std(["B", "C"])
NOTE: This uses Welford’s online method for an accumulator-style computation of the standard deviation. This method was chosen due to it’s numerical stability, and it being computable in a single pass. This may give different (but more accurate) results than NumPy, Pandas, and sklearn, which use a less numerically stable two-pass algorithm. See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford’s_online_algorithm
- Parameters:
on – a column name or a list of column names to aggregate.
ddof – Delta Degrees of Freedom. The divisor used in calculations is
N - ddof, whereNrepresents the number of elements.ignore_nulls – Whether to ignore null values. If
True, null values will be ignored when computing the std; ifFalse, if a null value is encountered, the output will be null. We consider np.nan, None, and pd.NaT to be null values. Default isTrue.
- Returns:
The standard deviation result.
For different values of
on, the return varies:on=None: a dataset containing a groupby key column,"k", and a column-wise std column for each original column in the dataset.on=["col_1", ..., "col_n"]: a dataset ofn + 1columns where the first column is the groupby key and the second throughn + 1columns are the results of the aggregations.
If groupby key is
Nonethen the key part of return is omitted.