Source code for ray.tune.trainable.function_trainable

import inspect
import logging
import os
import queue
from functools import partial
from numbers import Number
from typing import Any, Callable, Dict, Optional, Type

import ray.train
from ray.air._internal.util import RunnerThread, StartTraceback
from ray.air.constants import _ERROR_FETCH_TIMEOUT
from ray.train._internal.checkpoint_manager import _TrainingResult
from ray.train._internal.session import (
    TrialInfo,
    _TrainSession,
    get_session,
    init_session,
    shutdown_session,
)
from ray.tune.execution.placement_groups import PlacementGroupFactory
from ray.tune.result import DEFAULT_METRIC, RESULT_DUPLICATE, SHOULD_CHECKPOINT
from ray.tune.trainable.trainable import Trainable
from ray.tune.utils import _detect_config_single
from ray.util.annotations import DeveloperAPI

logger = logging.getLogger(__name__)

# Time between FunctionTrainable checks when fetching
# new results after signaling the reporter to continue

NULL_MARKER = ".null_marker"
TEMP_MARKER = ".temp_marker"


[docs]@DeveloperAPI class FunctionTrainable(Trainable): """Trainable that runs a user function reporting results. This mode of execution does not support checkpoint/restore.""" _name = "func" def setup(self, config): init_session( training_func=lambda: self._trainable_func(self.config), trial_info=TrialInfo( name=self.trial_name, id=self.trial_id, resources=self.trial_resources, logdir=self._storage.trial_driver_staging_path, driver_ip=None, driver_node_id=None, experiment_name=self._storage.experiment_dir_name, ), storage=self._storage, synchronous_result_reporting=True, # Set all Train-specific properties to None. world_rank=None, local_rank=None, node_rank=None, local_world_size=None, world_size=None, dataset_shard=None, checkpoint=None, ) self._last_training_result: Optional[_TrainingResult] = None def _trainable_func(self, config: Dict[str, Any]): """Subclasses can override this to set the trainable func.""" raise NotImplementedError def _start(self): def entrypoint(): try: return self._trainable_func(self.config) except Exception as e: raise StartTraceback from e # the runner thread is not started until the first call to _train self._runner = RunnerThread( target=entrypoint, error_queue=self._error_queue, daemon=True ) # if not alive, try to start self._status_reporter._start() try: self._runner.start() except RuntimeError: # If this is reached, it means the thread was started and is # now done or has raised an exception. pass def step(self): """Implements train() for a Function API. If the RunnerThread finishes without reporting "done", Tune will automatically provide a magic keyword __duplicate__ along with a result with "done=True". The TrialRunner will handle the result accordingly (see tune/tune_controller.py). """ session: _TrainSession = get_session() if not session.training_started: session.start() training_result: Optional[_TrainingResult] = session.get_next() if not training_result: # The `RESULT_DUPLICATE` result should have been the last # result reported by the session, which triggers cleanup. raise RuntimeError( "Should not have reached here. The TuneController should not " "have scheduled another `train` remote call." "It should have scheduled a `stop` instead " "after the training function exits." ) metrics = training_result.metrics # This keyword appears if the train_func using the Function API # finishes without "done=True". This duplicates the last result, but # the TuneController will not log this result again. # TuneController will also inject done=True to the result, # and proceed to queue up a STOP decision for the trial. if RESULT_DUPLICATE in metrics: metrics[SHOULD_CHECKPOINT] = False self._last_training_result = training_result if training_result.checkpoint is not None: # TODO(justinvyu): Result/checkpoint reporting can be combined. # For now, since result/checkpoint reporting is separate, this # special key will tell Tune to pull the checkpoint from # the `last_training_result`. metrics[SHOULD_CHECKPOINT] = True return metrics def execute(self, fn): return fn(self) def save_checkpoint(self, checkpoint_dir: str = ""): if checkpoint_dir: raise ValueError("Checkpoint dir should not be used with function API.") # TODO(justinvyu): This currently breaks the `save_checkpoint` interface. # TRAIN -> SAVE remote calls get processed sequentially, # so `_last_training_result.checkpoint` holds onto the latest ckpt. return self._last_training_result def load_checkpoint(self, checkpoint_result: _TrainingResult): # TODO(justinvyu): This currently breaks the `load_checkpoint` interface. session = get_session() session.loaded_checkpoint = checkpoint_result.checkpoint def cleanup(self): session = get_session() try: # session.finish raises any Exceptions from training. # Do not wait for thread termination here (timeout=0). session.finish(timeout=0) finally: # Check for any errors that might have been missed. session._report_thread_runner_error() # Shutdown session even if session.finish() raises an Exception. shutdown_session() def reset_config(self, new_config): session = get_session() # Wait for thread termination so it is save to re-use the same actor. thread_timeout = int(os.environ.get("TUNE_FUNCTION_THREAD_TIMEOUT_S", 2)) session.finish(timeout=thread_timeout) if session.training_thread.is_alive(): # Did not finish within timeout, reset unsuccessful. return False session.reset( training_func=lambda: self._trainable_func(self.config), trial_info=TrialInfo( name=self.trial_name, id=self.trial_id, resources=self.trial_resources, logdir=self._storage.trial_working_directory, driver_ip=None, driver_node_id=None, experiment_name=self._storage.experiment_dir_name, ), storage=self._storage, ) self._last_result = {} return True def _report_thread_runner_error(self, block=False): try: e = self._error_queue.get(block=block, timeout=_ERROR_FETCH_TIMEOUT) raise StartTraceback from e except queue.Empty: pass
[docs]@DeveloperAPI def wrap_function( train_func: Callable[[Any], Any], name: Optional[str] = None ) -> Type["FunctionTrainable"]: inherit_from = (FunctionTrainable,) if hasattr(train_func, "__mixins__"): inherit_from = train_func.__mixins__ + inherit_from func_args = inspect.getfullargspec(train_func).args use_config_single = _detect_config_single(train_func) if not use_config_single: raise ValueError( "Unknown argument found in the Trainable function. " "The function args must include a single 'config' positional parameter.\n" "Found: {}".format(func_args) ) resources = getattr(train_func, "_resources", None) class ImplicitFunc(*inherit_from): _name = name or ( train_func.__name__ if hasattr(train_func, "__name__") else "func" ) def __repr__(self): return self._name def _trainable_func(self, config): fn = partial(train_func, config) def handle_output(output): if not output: return elif isinstance(output, dict): ray.train.report(output) elif isinstance(output, Number): ray.train.report({DEFAULT_METRIC: output}) else: raise ValueError( "Invalid return or yield value. Either return/yield " "a single number or a dictionary object in your " "trainable function." ) output = None if inspect.isgeneratorfunction(train_func): for output in fn(): handle_output(output) else: output = fn() handle_output(output) # If train_func returns, we need to notify the main event loop # of the last result while avoiding double logging. This is done # with the keyword RESULT_DUPLICATE -- see tune/tune_controller.py. ray.train.report({RESULT_DUPLICATE: True}) return output @classmethod def default_resource_request( cls, config: Dict[str, Any] ) -> Optional[PlacementGroupFactory]: if not isinstance(resources, PlacementGroupFactory) and callable(resources): return resources(config) return resources return ImplicitFunc