Source code for ray.tune.registry

import atexit
import logging
from functools import partial
from types import FunctionType
from typing import Callable, Optional, Type, Union

import ray
import ray.cloudpickle as pickle
from ray.experimental.internal_kv import (
    _internal_kv_del,
    _internal_kv_get,
    _internal_kv_initialized,
    _internal_kv_put,
)
from ray.tune.error import TuneError
from ray.util.annotations import DeveloperAPI

TRAINABLE_CLASS = "trainable_class"
ENV_CREATOR = "env_creator"
RLLIB_MODEL = "rllib_model"
RLLIB_PREPROCESSOR = "rllib_preprocessor"
RLLIB_ACTION_DIST = "rllib_action_dist"
RLLIB_INPUT = "rllib_input"
RLLIB_CONNECTOR = "rllib_connector"
TEST = "__test__"
KNOWN_CATEGORIES = [
    TRAINABLE_CLASS,
    ENV_CREATOR,
    RLLIB_MODEL,
    RLLIB_PREPROCESSOR,
    RLLIB_ACTION_DIST,
    RLLIB_INPUT,
    RLLIB_CONNECTOR,
    TEST,
]

logger = logging.getLogger(__name__)


def _has_trainable(trainable_name):
    return _global_registry.contains(TRAINABLE_CLASS, trainable_name)


@DeveloperAPI
def get_trainable_cls(trainable_name):
    validate_trainable(trainable_name)
    return _global_registry.get(TRAINABLE_CLASS, trainable_name)


@DeveloperAPI
def validate_trainable(trainable_name: str):
    if not _has_trainable(trainable_name) and not _has_rllib_trainable(trainable_name):
        raise TuneError(f"Unknown trainable: {trainable_name}")


def _has_rllib_trainable(trainable_name: str) -> bool:
    try:
        # Make sure everything rllib-related is registered.
        from ray.rllib import _register_all
    except (ImportError, ModuleNotFoundError):
        return False

    _register_all()
    return _has_trainable(trainable_name)


@DeveloperAPI
def is_function_trainable(trainable: Union[str, Callable, Type]) -> bool:
    """Check if a given trainable is a function trainable.
    Either the trainable has been wrapped as a FunctionTrainable class already,
    or it's still a FunctionType/partial/callable."""
    from ray.tune.trainable import FunctionTrainable

    if isinstance(trainable, str):
        trainable = get_trainable_cls(trainable)

    is_wrapped_func = isinstance(trainable, type) and issubclass(
        trainable, FunctionTrainable
    )
    return is_wrapped_func or (
        not isinstance(trainable, type)
        and (
            isinstance(trainable, FunctionType)
            or isinstance(trainable, partial)
            or callable(trainable)
        )
    )


[docs] @DeveloperAPI def register_trainable(name: str, trainable: Union[Callable, Type], warn: bool = True): """Register a trainable function or class. This enables a class or function to be accessed on every Ray process in the cluster. Args: name: Name to register. trainable: Function or tune.Trainable class. Functions must take (config, status_reporter) as arguments and will be automatically converted into a class during registration. """ from ray.tune.trainable import Trainable, wrap_function if isinstance(trainable, type): logger.debug("Detected class for trainable.") elif isinstance(trainable, FunctionType) or isinstance(trainable, partial): logger.debug("Detected function for trainable.") trainable = wrap_function(trainable) elif callable(trainable): logger.info("Detected unknown callable for trainable. Converting to class.") trainable = wrap_function(trainable) if not issubclass(trainable, Trainable): raise TypeError("Second argument must be convertable to Trainable", trainable) _global_registry.register(TRAINABLE_CLASS, name, trainable)
def _unregister_trainables(): _global_registry.unregister_all(TRAINABLE_CLASS)
[docs] @DeveloperAPI def register_env(name: str, env_creator: Callable): """Register a custom environment for use with RLlib. This enables the environment to be accessed on every Ray process in the cluster. Args: name: Name to register. env_creator: Callable that creates an env. """ if not callable(env_creator): raise TypeError("Second argument must be callable.", env_creator) _global_registry.register(ENV_CREATOR, name, env_creator)
def _unregister_envs(): _global_registry.unregister_all(ENV_CREATOR) @DeveloperAPI def register_input(name: str, input_creator: Callable): """Register a custom input api for RLlib. Args: name: Name to register. input_creator: Callable that creates an input reader. """ if not callable(input_creator): raise TypeError("Second argument must be callable.", input_creator) _global_registry.register(RLLIB_INPUT, name, input_creator) def _unregister_inputs(): _global_registry.unregister_all(RLLIB_INPUT) @DeveloperAPI def registry_contains_input(name: str) -> bool: return _global_registry.contains(RLLIB_INPUT, name) @DeveloperAPI def registry_get_input(name: str) -> Callable: return _global_registry.get(RLLIB_INPUT, name) def _unregister_all(): _unregister_inputs() _unregister_envs() _unregister_trainables() def _check_serializability(key, value): _global_registry.register(TEST, key, value) def _make_key(prefix: str, category: str, key: str): """Generate a binary key for the given category and key. Args: prefix: Prefix category: The category of the item key: The unique identifier for the item Returns: The key to use for storing a the value. """ return ( b"TuneRegistry:" + prefix.encode("ascii") + b":" + category.encode("ascii") + b"/" + key.encode("ascii") ) class _Registry: def __init__(self, prefix: Optional[str] = None): """If no prefix is given, use runtime context job ID.""" self._to_flush = {} self._prefix = prefix self._registered = set() self._atexit_handler_registered = False @property def prefix(self): if not self._prefix: self._prefix = ray.get_runtime_context().get_job_id() return self._prefix def _register_atexit(self): if self._atexit_handler_registered: # Already registered return if ray._private.worker.global_worker.mode != ray.SCRIPT_MODE: # Only cleanup on the driver return atexit.register(_unregister_all) self._atexit_handler_registered = True def register(self, category, key, value): """Registers the value with the global registry. Raises: PicklingError if unable to pickle to provided file. """ if category not in KNOWN_CATEGORIES: from ray.tune import TuneError raise TuneError( "Unknown category {} not among {}".format(category, KNOWN_CATEGORIES) ) self._to_flush[(category, key)] = pickle.dumps_debug(value) if _internal_kv_initialized(): self.flush_values() def unregister(self, category, key): if _internal_kv_initialized(): _internal_kv_del(_make_key(self.prefix, category, key)) else: self._to_flush.pop((category, key), None) def unregister_all(self, category: Optional[str] = None): remaining = set() for cat, key in self._registered: if category and category == cat: self.unregister(cat, key) else: remaining.add((cat, key)) self._registered = remaining def contains(self, category, key): if _internal_kv_initialized(): value = _internal_kv_get(_make_key(self.prefix, category, key)) return value is not None else: return (category, key) in self._to_flush def get(self, category, key): if _internal_kv_initialized(): value = _internal_kv_get(_make_key(self.prefix, category, key)) if value is None: raise ValueError( "Registry value for {}/{} doesn't exist.".format(category, key) ) return pickle.loads(value) else: return pickle.loads(self._to_flush[(category, key)]) def flush_values(self): self._register_atexit() for (category, key), value in self._to_flush.items(): _internal_kv_put( _make_key(self.prefix, category, key), value, overwrite=True ) self._registered.add((category, key)) self._to_flush.clear() _global_registry = _Registry() ray._private.worker._post_init_hooks.append(_global_registry.flush_values) class _ParameterRegistry: def __init__(self): self.to_flush = {} self.references = {} def put(self, k, v): self.to_flush[k] = v if ray.is_initialized(): self.flush() def get(self, k): if not ray.is_initialized(): return self.to_flush[k] return ray.get(self.references[k]) def flush(self): for k, v in self.to_flush.items(): if isinstance(v, ray.ObjectRef): self.references[k] = v else: self.references[k] = ray.put(v) self.to_flush.clear()