Source code for ray.rllib.utils.replay_buffers.reservoir_replay_buffer
from typing import Any, Dict
import random
# Import ray before psutil will make sure we use psutil's bundled version
import ray # noqa F401
import psutil # noqa E402
from ray.rllib.utils.annotations import ExperimentalAPI, override
from ray.rllib.utils.replay_buffers.replay_buffer import (
ReplayBuffer,
warn_replay_capacity,
)
from ray.rllib.utils.typing import SampleBatchType
# __sphinx_doc_reservoir_buffer__begin__
[docs]@ExperimentalAPI
class ReservoirReplayBuffer(ReplayBuffer):
"""This buffer implements reservoir sampling.
The algorithm has been described by Jeffrey S. Vitter in "Random sampling
with a reservoir".
"""
[docs] def __init__(
self, capacity: int = 10000, storage_unit: str = "timesteps", **kwargs
):
"""Initializes a ReservoirBuffer instance.
Args:
capacity: Max number of timesteps to store in the FIFO
buffer. After reaching this number, older samples will be
dropped to make space for new ones.
storage_unit: Either 'timesteps', 'sequences' or
'episodes'. Specifies how experiences are stored.
"""
ReplayBuffer.__init__(self, capacity, storage_unit)
self._num_add_calls = 0
self._num_evicted = 0
@ExperimentalAPI
@override(ReplayBuffer)
def _add_single_batch(self, item: SampleBatchType, **kwargs) -> None:
"""Add a SampleBatch of experiences to self._storage.
An item consists of either one or more timesteps, a sequence or an
episode. Differs from add() in that it does not consider the storage
unit or type of batch and simply stores it.
Args:
item: The batch to be added.
``**kwargs``: Forward compatibility kwargs.
"""
self._num_timesteps_added += item.count
self._num_timesteps_added_wrap += item.count
# Update add counts.
self._num_add_calls += 1
# Update our timesteps counts.
if self._num_timesteps_added < self.capacity:
self._storage.append(item)
self._est_size_bytes += item.size_bytes()
else:
# Eviction of older samples has already started (buffer is "full")
self._eviction_started = True
idx = random.randint(0, self._num_add_calls - 1)
if idx < len(self._storage):
self._num_evicted += 1
self._evicted_hit_stats.push(self._hit_count[idx])
self._hit_count[idx] = 0
# This is a bit of a hack: ReplayBuffer always inserts at
# self._next_idx
self._next_idx = idx
self._evicted_hit_stats.push(self._hit_count[idx])
self._hit_count[idx] = 0
item_to_be_removed = self._storage[idx]
self._est_size_bytes -= item_to_be_removed.size_bytes()
self._storage[idx] = item
self._est_size_bytes += item.size_bytes()
assert item.count > 0, item
warn_replay_capacity(item=item, num_items=self.capacity / item.count)
[docs] @ExperimentalAPI
@override(ReplayBuffer)
def stats(self, debug: bool = False) -> dict:
"""Returns the stats of this buffer.
Args:
debug: If True, adds sample eviction statistics to the returned
stats dict.
Returns:
A dictionary of stats about this buffer.
"""
data = {
"num_evicted": self._num_evicted,
"num_add_calls": self._num_add_calls,
}
parent = ReplayBuffer.stats(self, debug)
parent.update(data)
return parent
[docs] @ExperimentalAPI
@override(ReplayBuffer)
def get_state(self) -> Dict[str, Any]:
"""Returns all local state.
Returns:
The serializable local state.
"""
parent = ReplayBuffer.get_state(self)
parent.update(self.stats())
return parent
[docs] @ExperimentalAPI
@override(ReplayBuffer)
def set_state(self, state: Dict[str, Any]) -> None:
"""Restores all local state to the provided `state`.
Args:
state: The new state to set this buffer. Can be
obtained by calling `self.get_state()`.
"""
self._num_evicted = state["num_evicted"]
self._num_add_calls = state["num_add_calls"]
ReplayBuffer.set_state(self, state)
# __sphinx_doc_reservoir_buffer__end__