from collections import Counter, OrderedDict
from functools import partial
from typing import Dict, List, Optional
import numpy as np
import pandas as pd
import pandas.api.types
from ray.air.util.data_batch_conversion import BatchFormat
from ray.data import Dataset
from ray.data.preprocessor import Preprocessor, PreprocessorNotFittedException
from ray.util.annotations import PublicAPI
[docs]
@PublicAPI(stability="alpha")
class OrdinalEncoder(Preprocessor):
"""Encode values within columns as ordered integer values.
:class:`OrdinalEncoder` encodes categorical features as integers that range from
:math:`0` to :math:`n - 1`, where :math:`n` is the number of categories.
If you transform a value that isn't in the fitted datset, then the value is encoded
as ``float("nan")``.
Columns must contain either hashable values or lists of hashable values. Also, you
can't have both scalars and lists in the same column.
Examples:
Use :class:`OrdinalEncoder` to encode categorical features as integers.
>>> import pandas as pd
>>> import ray
>>> from ray.data.preprocessors import OrdinalEncoder
>>> df = pd.DataFrame({
... "sex": ["male", "female", "male", "female"],
... "level": ["L4", "L5", "L3", "L4"],
... })
>>> ds = ray.data.from_pandas(df) # doctest: +SKIP
>>> encoder = OrdinalEncoder(columns=["sex", "level"])
>>> encoder.fit_transform(ds).to_pandas() # doctest: +SKIP
sex level
0 1 1
1 0 2
2 1 0
3 0 1
If you transform a value not present in the original dataset, then the value
is encoded as ``float("nan")``.
>>> df = pd.DataFrame({"sex": ["female"], "level": ["L6"]})
>>> ds = ray.data.from_pandas(df) # doctest: +SKIP
>>> encoder.transform(ds).to_pandas() # doctest: +SKIP
sex level
0 0 NaN
:class:`OrdinalEncoder` can also encode categories in a list.
>>> df = pd.DataFrame({
... "name": ["Shaolin Soccer", "Moana", "The Smartest Guys in the Room"],
... "genre": [
... ["comedy", "action", "sports"],
... ["animation", "comedy", "action"],
... ["documentary"],
... ],
... })
>>> ds = ray.data.from_pandas(df) # doctest: +SKIP
>>> encoder = OrdinalEncoder(columns=["genre"])
>>> encoder.fit_transform(ds).to_pandas() # doctest: +SKIP
name genre
0 Shaolin Soccer [2, 0, 4]
1 Moana [1, 2, 0]
2 The Smartest Guys in the Room [3]
Args:
columns: The columns to separately encode.
encode_lists: If ``True``, encode list elements. If ``False``, encode
whole lists (i.e., replace each list with an integer). ``True``
by default.
.. seealso::
:class:`OneHotEncoder`
Another preprocessor that encodes categorical data.
"""
def __init__(self, columns: List[str], *, encode_lists: bool = True):
# TODO: allow user to specify order of values within each column.
self.columns = columns
self.encode_lists = encode_lists
def _fit(self, dataset: Dataset) -> Preprocessor:
self.stats_ = _get_unique_value_indices(
dataset, self.columns, encode_lists=self.encode_lists
)
return self
def _transform_pandas(self, df: pd.DataFrame):
_validate_df(df, *self.columns)
def encode_list(element: list, *, name: str):
return [self.stats_[f"unique_values({name})"].get(x) for x in element]
def column_ordinal_encoder(s: pd.Series):
if _is_series_composed_of_lists(s):
if self.encode_lists:
return s.map(partial(encode_list, name=s.name))
# cannot simply use map here due to pandas thinking
# tuples are to be used for indices
def list_as_category(element):
element = tuple(element)
return self.stats_[f"unique_values({s.name})"].get(element)
return s.apply(list_as_category)
s_values = self.stats_[f"unique_values({s.name})"]
return s.map(s_values)
df[self.columns] = df[self.columns].apply(column_ordinal_encoder)
return df
def __repr__(self):
return (
f"{self.__class__.__name__}(columns={self.columns!r}, "
f"encode_lists={self.encode_lists!r})"
)
[docs]
@PublicAPI(stability="alpha")
class OneHotEncoder(Preprocessor):
"""`One-hot encode <https://en.wikipedia.org/wiki/One-hot#Machine_learning_and_statistics>`_
categorical data.
This preprocessor creates a column named ``{column}_{category}``
for each unique ``{category}`` in ``{column}``. The value of a column is
1 if the category matches and 0 otherwise.
If you encode an infrequent category (see ``max_categories``) or a category
that isn't in the fitted dataset, then the category is encoded as all 0s.
Columns must contain hashable objects or lists of hashable objects.
.. note::
Lists are treated as categories. If you want to encode individual list
elements, use :class:`MultiHotEncoder`.
Example:
>>> import pandas as pd
>>> import ray
>>> from ray.data.preprocessors import OneHotEncoder
>>>
>>> df = pd.DataFrame({"color": ["red", "green", "red", "red", "blue", "green"]})
>>> ds = ray.data.from_pandas(df) # doctest: +SKIP
>>> encoder = OneHotEncoder(columns=["color"])
>>> encoder.fit_transform(ds).to_pandas() # doctest: +SKIP
color_blue color_green color_red
0 0 0 1
1 0 1 0
2 0 0 1
3 0 0 1
4 1 0 0
5 0 1 0
If you one-hot encode a value that isn't in the fitted dataset, then the
value is encoded with zeros.
>>> df = pd.DataFrame({"color": ["yellow"]})
>>> batch = ray.data.from_pandas(df) # doctest: +SKIP
>>> encoder.transform(batch).to_pandas() # doctest: +SKIP
color_blue color_green color_red
0 0 0 0
Likewise, if you one-hot encode an infrequent value, then the value is encoded
with zeros.
>>> encoder = OneHotEncoder(columns=["color"], max_categories={"color": 2})
>>> encoder.fit_transform(ds).to_pandas() # doctest: +SKIP
color_red color_green
0 1 0
1 0 1
2 1 0
3 1 0
4 0 0
5 0 1
Args:
columns: The columns to separately encode.
max_categories: The maximum number of features to create for each column.
If a value isn't specified for a column, then a feature is created
for every category in that column.
.. seealso::
:class:`MultiHotEncoder`
If you want to encode individual list elements, use
:class:`MultiHotEncoder`.
:class:`OrdinalEncoder`
If your categories are ordered, you may want to use
:class:`OrdinalEncoder`.
""" # noqa: E501
def __init__(
self, columns: List[str], *, max_categories: Optional[Dict[str, int]] = None
):
# TODO: add `drop` parameter.
self.columns = columns
self.max_categories = max_categories
def _fit(self, dataset: Dataset) -> Preprocessor:
self.stats_ = _get_unique_value_indices(
dataset,
self.columns,
max_categories=self.max_categories,
encode_lists=False,
)
return self
def _transform_pandas(self, df: pd.DataFrame):
_validate_df(df, *self.columns)
columns_to_drop = set(self.columns)
# Compute new one-hot encoded columns
for column in self.columns:
column_values = self.stats_[f"unique_values({column})"]
if _is_series_composed_of_lists(df[column]):
df[column] = df[column].map(lambda x: tuple(x))
for column_value in column_values:
df[f"{column}_{column_value}"] = (df[column] == column_value).astype(
int
)
# Drop original unencoded columns.
df = df.drop(columns=list(columns_to_drop))
return df
def __repr__(self):
return (
f"{self.__class__.__name__}(columns={self.columns!r}, "
f"max_categories={self.max_categories!r})"
)
[docs]
@PublicAPI(stability="alpha")
class MultiHotEncoder(Preprocessor):
"""Multi-hot encode categorical data.
This preprocessor replaces each list of categories with an :math:`m`-length binary
list, where :math:`m` is the number of unique categories in the column or the value
specified in ``max_categories``. The :math:`i\\text{-th}` element of the binary list
is :math:`1` if category :math:`i` is in the input list and :math:`0` otherwise.
Columns must contain hashable objects or lists of hashable objects.
Also, you can't have both types in the same column.
.. note::
The logic is similar to scikit-learn's `MultiLabelBinarizer \
<https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing\
.MultiLabelBinarizer.html>`_.
Examples:
>>> import pandas as pd
>>> import ray
>>> from ray.data.preprocessors import MultiHotEncoder
>>>
>>> df = pd.DataFrame({
... "name": ["Shaolin Soccer", "Moana", "The Smartest Guys in the Room"],
... "genre": [
... ["comedy", "action", "sports"],
... ["animation", "comedy", "action"],
... ["documentary"],
... ],
... })
>>> ds = ray.data.from_pandas(df) # doctest: +SKIP
>>>
>>> encoder = MultiHotEncoder(columns=["genre"])
>>> encoder.fit_transform(ds).to_pandas() # doctest: +SKIP
name genre
0 Shaolin Soccer [1, 0, 1, 0, 1]
1 Moana [1, 1, 1, 0, 0]
2 The Smartest Guys in the Room [0, 0, 0, 1, 0]
If you specify ``max_categories``, then :class:`MultiHotEncoder`
creates features for only the most frequent categories.
>>> encoder = MultiHotEncoder(columns=["genre"], max_categories={"genre": 3})
>>> encoder.fit_transform(ds).to_pandas() # doctest: +SKIP
name genre
0 Shaolin Soccer [1, 1, 1]
1 Moana [1, 1, 0]
2 The Smartest Guys in the Room [0, 0, 0]
>>> encoder.stats_ # doctest: +SKIP
OrderedDict([('unique_values(genre)', {'comedy': 0, 'action': 1, 'sports': 2})])
Args:
columns: The columns to separately encode.
max_categories: The maximum number of features to create for each column.
If a value isn't specified for a column, then a feature is created
for every unique category in that column.
.. seealso::
:class:`OneHotEncoder`
If you're encoding individual categories instead of lists of
categories, use :class:`OneHotEncoder`.
:class:`OrdinalEncoder`
If your categories are ordered, you may want to use
:class:`OrdinalEncoder`.
"""
def __init__(
self, columns: List[str], *, max_categories: Optional[Dict[str, int]] = None
):
# TODO: add `drop` parameter.
self.columns = columns
self.max_categories = max_categories
def _fit(self, dataset: Dataset) -> Preprocessor:
self.stats_ = _get_unique_value_indices(
dataset,
self.columns,
max_categories=self.max_categories,
encode_lists=True,
)
return self
def _transform_pandas(self, df: pd.DataFrame):
_validate_df(df, *self.columns)
def encode_list(element: list, *, name: str):
if isinstance(element, np.ndarray):
element = element.tolist()
elif not isinstance(element, list):
element = [element]
stats = self.stats_[f"unique_values({name})"]
counter = Counter(element)
return [counter.get(x, 0) for x in stats]
for column in self.columns:
df[column] = df[column].map(partial(encode_list, name=column))
return df
def __repr__(self):
return (
f"{self.__class__.__name__}(columns={self.columns!r}, "
f"max_categories={self.max_categories!r})"
)
[docs]
@PublicAPI(stability="alpha")
class LabelEncoder(Preprocessor):
"""Encode labels as integer targets.
:class:`LabelEncoder` encodes labels as integer targets that range from
:math:`0` to :math:`n - 1`, where :math:`n` is the number of unique labels.
If you transform a label that isn't in the fitted datset, then the label is encoded
as ``float("nan")``.
Examples:
>>> import pandas as pd
>>> import ray
>>> df = pd.DataFrame({
... "sepal_width": [5.1, 7, 4.9, 6.2],
... "sepal_height": [3.5, 3.2, 3, 3.4],
... "species": ["setosa", "versicolor", "setosa", "virginica"]
... })
>>> ds = ray.data.from_pandas(df) # doctest: +SKIP
>>>
>>> from ray.data.preprocessors import LabelEncoder
>>> encoder = LabelEncoder(label_column="species")
>>> encoder.fit_transform(ds).to_pandas() # doctest: +SKIP
sepal_width sepal_height species
0 5.1 3.5 0
1 7.0 3.2 1
2 4.9 3.0 0
3 6.2 3.4 2
If you transform a label not present in the original dataset, then the new
label is encoded as ``float("nan")``.
>>> df = pd.DataFrame({
... "sepal_width": [4.2],
... "sepal_height": [2.7],
... "species": ["bracteata"]
... })
>>> ds = ray.data.from_pandas(df) # doctest: +SKIP
>>> encoder.transform(ds).to_pandas() # doctest: +SKIP
sepal_width sepal_height species
0 4.2 2.7 NaN
Args:
label_column: A column containing labels that you want to encode.
.. seealso::
:class:`OrdinalEncoder`
If you're encoding ordered features, use :class:`OrdinalEncoder` instead of
:class:`LabelEncoder`.
"""
def __init__(self, label_column: str):
self.label_column = label_column
def _fit(self, dataset: Dataset) -> Preprocessor:
self.stats_ = _get_unique_value_indices(dataset, [self.label_column])
return self
def _transform_pandas(self, df: pd.DataFrame):
_validate_df(df, self.label_column)
def column_label_encoder(s: pd.Series):
s_values = self.stats_[f"unique_values({s.name})"]
return s.map(s_values)
df[self.label_column] = df[self.label_column].transform(column_label_encoder)
return df
def _inverse_transform_pandas(self, df: pd.DataFrame):
def column_label_decoder(s: pd.Series):
inverse_values = {
value: key
for key, value in self.stats_[
f"unique_values({self.label_column})"
].items()
}
return s.map(inverse_values)
df[self.label_column] = df[self.label_column].transform(column_label_decoder)
return df
def __repr__(self):
return f"{self.__class__.__name__}(label_column={self.label_column!r})"
[docs]
@PublicAPI(stability="alpha")
class Categorizer(Preprocessor):
"""Convert columns to ``pd.CategoricalDtype``.
Use this preprocessor with frameworks that have built-in support for
``pd.CategoricalDtype`` like LightGBM.
.. warning::
If you don't specify ``dtypes``, fit this preprocessor before splitting
your dataset into train and test splits. This ensures categories are
consistent across splits.
Examples:
>>> import pandas as pd
>>> import ray
>>> from ray.data.preprocessors import Categorizer
>>>
>>> df = pd.DataFrame(
... {
... "sex": ["male", "female", "male", "female"],
... "level": ["L4", "L5", "L3", "L4"],
... })
>>> ds = ray.data.from_pandas(df) # doctest: +SKIP
>>> categorizer = Categorizer(columns=["sex", "level"])
>>> categorizer.fit_transform(ds).schema().types # doctest: +SKIP
[CategoricalDtype(categories=['female', 'male'], ordered=False), CategoricalDtype(categories=['L3', 'L4', 'L5'], ordered=False)]
If you know the categories in advance, you can specify the categories with the
``dtypes`` parameter.
>>> categorizer = Categorizer(
... columns=["sex", "level"],
... dtypes={"level": pd.CategoricalDtype(["L3", "L4", "L5", "L6"], ordered=True)},
... )
>>> categorizer.fit_transform(ds).schema().types # doctest: +SKIP
[CategoricalDtype(categories=['female', 'male'], ordered=False), CategoricalDtype(categories=['L3', 'L4', 'L5', 'L6'], ordered=True)]
Args:
columns: The columns to convert to ``pd.CategoricalDtype``.
dtypes: An optional dictionary that maps columns to ``pd.CategoricalDtype``
objects. If you don't include a column in ``dtypes``, the categories
are inferred.
""" # noqa: E501
def __init__(
self,
columns: List[str],
dtypes: Optional[Dict[str, pd.CategoricalDtype]] = None,
):
if not dtypes:
dtypes = {}
self.columns = columns
self.dtypes = dtypes
def _fit(self, dataset: Dataset) -> Preprocessor:
columns_to_get = [
column for column in self.columns if column not in set(self.dtypes)
]
if columns_to_get:
unique_indices = _get_unique_value_indices(
dataset, columns_to_get, drop_na_values=True, key_format="{0}"
)
unique_indices = {
column: pd.CategoricalDtype(values_indices.keys())
for column, values_indices in unique_indices.items()
}
else:
unique_indices = {}
unique_indices = {**self.dtypes, **unique_indices}
self.stats_: Dict[str, pd.CategoricalDtype] = unique_indices
return self
def _transform_pandas(self, df: pd.DataFrame):
df = df.astype(self.stats_)
return df
def __repr__(self):
return (
f"{self.__class__.__name__}(columns={self.columns!r}, "
f"dtypes={self.dtypes!r})"
)
def _get_unique_value_indices(
dataset: Dataset,
columns: List[str],
drop_na_values: bool = False,
key_format: str = "unique_values({0})",
max_categories: Optional[Dict[str, int]] = None,
encode_lists: bool = True,
) -> Dict[str, Dict[str, int]]:
"""If drop_na_values is True, will silently drop NA values."""
if max_categories is None:
max_categories = {}
columns_set = set(columns)
for column in max_categories:
if column not in columns_set:
raise ValueError(
f"You set `max_categories` for {column}, which is not present in "
f"{columns}."
)
def get_pd_value_counts_per_column(col: pd.Series):
# special handling for lists
if _is_series_composed_of_lists(col):
if encode_lists:
counter = Counter()
def update_counter(element):
counter.update(element)
return element
col.map(update_counter)
return counter
else:
# convert to tuples to make lists hashable
col = col.map(lambda x: tuple(x))
return Counter(col.value_counts(dropna=False).to_dict())
def get_pd_value_counts(df: pd.DataFrame) -> List[Dict[str, Counter]]:
df_columns = df.columns.tolist()
result = {}
for col in columns:
if col in df_columns:
result[col] = [get_pd_value_counts_per_column(df[col])]
else:
raise ValueError(
f"Column '{col}' does not exist in DataFrame, which has columns: {df_columns}" # noqa: E501
)
return result
value_counts = dataset.map_batches(get_pd_value_counts, batch_format="pandas")
final_counters = {col: Counter() for col in columns}
for batch in value_counts.iter_batches(batch_size=None):
for col, counters in batch.items():
for counter in counters:
final_counters[col] += counter
# Inspect if there is any NA values.
for col in columns:
if drop_na_values:
counter = final_counters[col]
counter_dict = dict(counter)
sanitized_dict = {k: v for k, v in counter_dict.items() if not pd.isnull(k)}
final_counters[col] = Counter(sanitized_dict)
else:
if any(pd.isnull(k) for k in final_counters[col]):
raise ValueError(
f"Unable to fit column '{col}' because it contains null"
f" values. Consider imputing missing values first."
)
unique_values_with_indices = OrderedDict()
for column in columns:
if column in max_categories:
# Output sorted by freq.
unique_values_with_indices[key_format.format(column)] = {
k[0]: j
for j, k in enumerate(
final_counters[column].most_common(max_categories[column])
)
}
else:
# Output sorted by column name.
unique_values_with_indices[key_format.format(column)] = {
k: j for j, k in enumerate(sorted(dict(final_counters[column]).keys()))
}
return unique_values_with_indices
def _validate_df(df: pd.DataFrame, *columns: str) -> None:
null_columns = [column for column in columns if df[column].isnull().values.any()]
if null_columns:
raise ValueError(
f"Unable to transform columns {null_columns} because they contain "
f"null values. Consider imputing missing values first."
)
def _is_series_composed_of_lists(series: pd.Series) -> bool:
# we assume that all elements are a list here
first_not_none_element = next(
(element for element in series if element is not None), None
)
return pandas.api.types.is_object_dtype(series.dtype) and isinstance(
first_not_none_element, (list, np.ndarray)
)