RayDP (Spark on Ray)¶
RayDP combines your Spark and Ray clusters, making it easy to do large scale data processing using the PySpark API and seemlessly use that data to train your models using TensorFlow and PyTorch.
For more information and examples, see the RayDP Github page: https://github.com/oap_project/raydp
Installing RayDP¶
RayDP can be installed from PyPI and supports PySpark 3.0 and 3.1.
Note
RayDP requires ray >= 1.2.0
Note
In order to run Spark, the head and worker nodes will need Java installed.
Creating a Spark Session¶
To create a spark session, call raydp.init_spark
For example,
import raydp
spark = raydp.init_spark(
app_name = "example",
num_executors = 10,
executor_cores = 64,
memory_per_executor = "256GB"
)
Deep Learning with a Spark DataFrame¶
Training a Spark DataFrame with TensorFlow¶
raydp.tf.TFEstimator
provides an API for training with TensorFlow.
d = [{'age': 17 , 'grade': 12}]
df = spark.createDataFrame(d).collect()
from tensorflow import keras
model = keras.Sequential([])
estimator = raydp.tf.TFEstimator(
model = model,
num_worker = 10,
feature_columns = ["age"],
label_column = ["grade"]
)
estimator.fit_on_spark(df, test_df=None)
tensorflow_model = estimator.get_model()
Training a Spark DataFrame with PyTorch¶
Similarly, raydp.torch.TorchEstimator
provides an API for training with
PyTorch.
d = [{'age': 17 , 'grade': 12}]
df = spark.createDataFrame(d).collect()
import torch
model = torch.nn.Sequential()
estimator = raydp.tf.TFEstimator(
model = model,
num_worker = 10,
feature_columns = ["age"],
label_column = ["grade"]
)
estimator.fit_on_spark(df, test_df=None)
pytorch_model = estimator.get_model()