Using MXNet with Tune
Contents
Using MXNet with Tune#

Example#
import mxnet as mx
from ray import tune, logger
from ray.tune.integration.mxnet import TuneCheckpointCallback, TuneReportCallback
from ray.tune.schedulers import ASHAScheduler
def train_mnist_mxnet(config, mnist, num_epochs=10):
batch_size = config["batch_size"]
train_iter = mx.io.NDArrayIter(
mnist["train_data"], mnist["train_label"], batch_size, shuffle=True
)
val_iter = mx.io.NDArrayIter(mnist["test_data"], mnist["test_label"], batch_size)
data = mx.sym.var("data")
data = mx.sym.flatten(data=data)
fc1 = mx.sym.FullyConnected(data=data, num_hidden=config["layer_1_size"])
act1 = mx.sym.Activation(data=fc1, act_type="relu")
fc2 = mx.sym.FullyConnected(data=act1, num_hidden=config["layer_2_size"])
act2 = mx.sym.Activation(data=fc2, act_type="relu")
# MNIST has 10 classes
fc3 = mx.sym.FullyConnected(data=act2, num_hidden=10)
# Softmax with cross entropy loss
mlp = mx.sym.SoftmaxOutput(data=fc3, name="softmax")
# create a trainable module on CPU
mlp_model = mx.mod.Module(symbol=mlp, context=mx.cpu())
mlp_model.fit(
train_iter,
eval_data=val_iter,
optimizer="sgd",
optimizer_params={"learning_rate": config["lr"]},
eval_metric="acc",
batch_end_callback=mx.callback.Speedometer(batch_size, 100),
eval_end_callback=TuneReportCallback({"mean_accuracy": "accuracy"}),
epoch_end_callback=TuneCheckpointCallback(filename="mxnet_cp", frequency=3),
num_epoch=num_epochs,
)
def tune_mnist_mxnet(num_samples=10, num_epochs=10):
logger.info("Downloading MNIST data...")
mnist_data = mx.test_utils.get_mnist()
logger.info("Got MNIST data, starting Ray Tune.")
config = {
"layer_1_size": tune.choice([32, 64, 128]),
"layer_2_size": tune.choice([64, 128, 256]),
"lr": tune.loguniform(1e-3, 1e-1),
"batch_size": tune.choice([32, 64, 128]),
}
scheduler = ASHAScheduler(max_t=num_epochs, grace_period=1, reduction_factor=2)
tuner = tune.Tuner(
tune.with_parameters(
train_mnist_mxnet, mnist=mnist_data, num_epochs=num_epochs
),
tune_config=tune.TuneConfig(
metric="mean_accuracy",
mode="max",
scheduler=scheduler,
num_samples=num_samples,
),
param_space=config,
)
results = tuner.fit()
return results
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--smoke-test", action="store_true", help="Finish quickly for testing"
)
args, _ = parser.parse_known_args()
if args.smoke_test:
results = tune_mnist_mxnet(num_samples=1, num_epochs=1)
else:
results = tune_mnist_mxnet(num_samples=10, num_epochs=10)
print("Best hyperparameters found were: ", results.get_best_result().config)
More MXNet Examples#
tune_cifar10_gluon: MXNet Gluon example to use Tune with the function-based API on CIFAR-10 dataset.