logging_exampleΒΆ

#!/usr/bin/env python

import argparse
import json
import os
import random

import numpy as np

from ray import tune
from ray.tune import Trainable, run


class TestLogger(tune.logger.Logger):
    def on_result(self, result):
        print("TestLogger", result)


def trial_str_creator(trial):
    return "{}_{}_123".format(trial.trainable_name, trial.trial_id)


class MyTrainableClass(Trainable):
    """Example agent whose learning curve is a random sigmoid.

    The dummy hyperparameters "width" and "height" determine the slope and
    maximum reward value reached.
    """

    def setup(self, config):
        self.timestep = 0

    def step(self):
        self.timestep += 1
        v = np.tanh(float(self.timestep) / self.config.get("width", 1))
        v *= self.config.get("height", 1)

        # Here we use `episode_reward_mean`, but you can also report other
        # objectives such as loss or accuracy.
        return {"episode_reward_mean": v}

    def save_checkpoint(self, checkpoint_dir):
        path = os.path.join(checkpoint_dir, "checkpoint")
        with open(path, "w") as f:
            f.write(json.dumps({"timestep": self.timestep}))
        return path

    def load_checkpoint(self, checkpoint_path):
        with open(checkpoint_path) as f:
            self.timestep = json.loads(f.read())["timestep"]


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--smoke-test", action="store_true", help="Finish quickly for testing")
    args, _ = parser.parse_known_args()

    trials = run(
        MyTrainableClass,
        name="hyperband_test",
        num_samples=5,
        trial_name_creator=trial_str_creator,
        loggers=[TestLogger],
        stop={"training_iteration": 1 if args.smoke_test else 99999},
        config={
            "width": tune.sample_from(
                lambda spec: 10 + int(90 * random.random())),
            "height": tune.sample_from(lambda spec: int(100 * random.random()))
        })