tensorflow_mnist_example

# This example showcases how to use Tensorflow with Ray Train.
# Original code:
# https://www.tensorflow.org/tutorials/distribute/multi_worker_with_keras
import argparse
import json
import os

import numpy as np
import tensorflow as tf
from ray.air.callbacks.keras import Callback as TrainReportCallback

from ray.train.tensorflow import TensorflowTrainer
from ray.air.config import ScalingConfig


def mnist_dataset(batch_size):
    (x_train, y_train), _ = tf.keras.datasets.mnist.load_data()
    # The `x` arrays are in uint8 and have values in the [0, 255] range.
    # You need to convert them to float32 with values in the [0, 1] range.
    x_train = x_train / np.float32(255)
    y_train = y_train.astype(np.int64)
    train_dataset = (
        tf.data.Dataset.from_tensor_slices((x_train, y_train))
        .shuffle(60000)
        .repeat()
        .batch(batch_size)
    )
    return train_dataset


def build_and_compile_cnn_model(config):
    learning_rate = config.get("lr", 0.001)
    model = tf.keras.Sequential(
        [
            tf.keras.Input(shape=(28, 28)),
            tf.keras.layers.Reshape(target_shape=(28, 28, 1)),
            tf.keras.layers.Conv2D(32, 3, activation="relu"),
            tf.keras.layers.Flatten(),
            tf.keras.layers.Dense(128, activation="relu"),
            tf.keras.layers.Dense(10),
        ]
    )
    model.compile(
        loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
        optimizer=tf.keras.optimizers.SGD(learning_rate=learning_rate),
        metrics=["accuracy"],
    )
    return model


def train_func(config):
    per_worker_batch_size = config.get("batch_size", 64)
    epochs = config.get("epochs", 3)
    steps_per_epoch = config.get("steps_per_epoch", 70)

    tf_config = json.loads(os.environ["TF_CONFIG"])
    num_workers = len(tf_config["cluster"]["worker"])

    strategy = tf.distribute.MultiWorkerMirroredStrategy()

    global_batch_size = per_worker_batch_size * num_workers
    multi_worker_dataset = mnist_dataset(global_batch_size)

    with strategy.scope():
        # Model building/compiling need to be within `strategy.scope()`.
        multi_worker_model = build_and_compile_cnn_model(config)

    history = multi_worker_model.fit(
        multi_worker_dataset,
        epochs=epochs,
        steps_per_epoch=steps_per_epoch,
        callbacks=[TrainReportCallback()],
    )
    results = history.history
    return results


def train_tensorflow_mnist(num_workers=2, use_gpu=False, epochs=4):
    trainer = TensorflowTrainer(
        train_func,
        train_loop_config={"lr": 1e-3, "batch_size": 64, "epochs": epochs},
        scaling_config=ScalingConfig(num_workers=num_workers, use_gpu=use_gpu),
    )
    results = trainer.fit()
    print(f"Results: {results.metrics}")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--address", required=False, type=str, help="the address to use for Ray"
    )
    parser.add_argument(
        "--num-workers",
        "-n",
        type=int,
        default=2,
        help="Sets number of workers for training.",
    )
    parser.add_argument(
        "--use-gpu", action="store_true", default=False, help="Enables GPU training"
    )
    parser.add_argument(
        "--epochs", type=int, default=3, help="Number of epochs to train for."
    )
    parser.add_argument(
        "--smoke-test",
        action="store_true",
        default=False,
        help="Finish quickly for testing.",
    )

    args, _ = parser.parse_known_args()

    import ray

    if args.smoke_test:
        ray.init(num_cpus=4)
        train_tensorflow_mnist()
    else:
        ray.init(address=args.address)
        train_tensorflow_mnist(
            num_workers=args.num_workers, use_gpu=args.use_gpu, epochs=args.epochs
        )