ray.rllib.evaluation.worker_set.WorkerSet.__init__
ray.rllib.evaluation.worker_set.WorkerSet.__init__#
- WorkerSet.__init__(*, env_creator: Optional[Callable[[EnvContext], Optional[Any]]] = None, validate_env: Optional[Callable[[Any], None]] = None, default_policy_class: Optional[Type[ray.rllib.policy.policy.Policy]] = None, config: Optional[AlgorithmConfig] = None, num_workers: int = 0, local_worker: bool = True, logdir: Optional[str] = None, _setup: bool = True)[source]#
Initializes a WorkerSet instance.
- Parameters
env_creator – Function that returns env given env config.
validate_env – Optional callable to validate the generated environment (only on worker=0). This callable should raise an exception if the environment is invalid.
default_policy_class – An optional default Policy class to use inside the (multi-agent)
policies
dict. In case the PolicySpecs in there have no class defined, use thisdefault_policy_class
. If None, PolicySpecs will be using the Algorithm’s default Policy class.config – Optional AlgorithmConfig (or config dict).
num_workers – Number of remote rollout workers to create.
local_worker – Whether to create a local (non @ray.remote) worker in the returned set as well (default: True). If
num_workers
is 0, always create a local worker.logdir – Optional logging directory for workers.
_setup – Whether to setup workers. This is only for testing.