ray.air.session.get_local_world_size
ray.air.session.get_local_world_size#
- ray.air.session.get_local_world_size() int [source]#
Get the local rank of this worker (rank of the worker on its node).
Example
>>> import ray >>> from ray.air import session >>> from ray.air.config import ScalingConfig >>> from ray.train.torch import TorchTrainer >>> >>> def train_loop_per_worker(): ... return session.get_local_world_size() >>> >>> train_dataset = ray.data.from_items( ... [{"x": x, "y": x + 1} for x in range(32)]) >>> trainer = TorchTrainer(train_loop_per_worker, ... scaling_config=ScalingConfig(num_workers=1), ... datasets={"train": train_dataset}) >>> trainer.fit()
PublicAPI (beta): This API is in beta and may change before becoming stable.