"""This example demonstrates the usage of ZOOptSearch.
It also checks that it is usable with a separate scheduler.
Requires the ZOOpt library to be installed (`pip install zoopt`).
"""
import time
from ray import air, tune
from ray.air import session
from ray.tune.search.zoopt import ZOOptSearch
from ray.tune.schedulers import AsyncHyperBandScheduler
def evaluation_fn(step, width, height):
time.sleep(0.1)
return (0.1 + width * step / 100) ** (-1) + height * 0.1
def easy_objective(config):
# Hyperparameters
width, height = config["width"], config["height"]
for step in range(config["steps"]):
# Iterative training function - can be any arbitrary training procedure
intermediate_score = evaluation_fn(step, width, height)
# Feed the score back back to Tune.
session.report({"iterations": step, "mean_loss": intermediate_score})
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--smoke-test", action="store_true", help="Finish quickly for testing"
)
args, _ = parser.parse_known_args()
num_samples = 10 if args.smoke_test else 1000
# Optional: Pass the parameter space yourself
# from zoopt import ValueType
# space = {
# # for continuous dimensions: (continuous, search_range, precision)
# "height": (ValueType.CONTINUOUS, [-10, 10], 1e-2),
# # for discrete dimensions: (discrete, search_range, has_order)
# "width": (ValueType.DISCRETE, [0, 10], True)
# # for grid dimensions: (grid, grid_list)
# "layers": (ValueType.GRID, [4, 8, 16])
# }
zoopt_search_config = {
"parallel_num": 8,
}
zoopt_search = ZOOptSearch(
algo="Asracos", # only support ASRacos currently
budget=num_samples,
# dim_dict=space, # If you want to set the space yourself
**zoopt_search_config,
)
scheduler = AsyncHyperBandScheduler()
tuner = tune.Tuner(
easy_objective,
tune_config=tune.TuneConfig(
metric="mean_loss",
mode="min",
search_alg=zoopt_search,
scheduler=scheduler,
num_samples=num_samples,
),
run_config=air.RunConfig(
name="zoopt_search",
),
param_space={
"steps": 10,
"height": tune.quniform(-10, 10, 1e-2),
"width": tune.randint(0, 10),
},
)
results = tuner.fit()
print("Best config found: ", results.get_best_result().config)