"""This example demonstrates the usage of SkOpt with Ray Tune.
It also checks that it is usable with a separate scheduler.
Requires the SkOpt library to be installed (`pip install scikit-optimize`).
"""
import time
from ray import air, tune
from ray.air import session
from ray.tune.search import ConcurrencyLimiter
from ray.tune.schedulers import AsyncHyperBandScheduler
from ray.tune.search.skopt import SkOptSearch
def evaluation_fn(step, width, height):
time.sleep(0.1)
return (0.1 + width * step / 100) ** (-1) + height * 0.1
def easy_objective(config):
# Hyperparameters
width, height = config["width"], config["height"]
for step in range(config["steps"]):
# Iterative training function - can be any arbitrary training procedure
intermediate_score = evaluation_fn(step, width, height)
# Feed the score back back to Tune.
session.report({"iterations": step, "mean_loss": intermediate_score})
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--smoke-test", action="store_true", help="Finish quickly for testing"
)
args, _ = parser.parse_known_args()
# The config will be automatically converted to SkOpt's search space
# Optional: Pass the parameter space yourself
# space = {
# "width": (0, 20),
# "height": (-100, 100),
# "activation": ["relu", "tanh"]
# }
previously_run_params = [
{"width": 10, "height": 0, "activation": "relu"}, # Activation will be relu
{"width": 15, "height": -20, "activation": "tanh"}, # Activation will be tanh
]
known_rewards = [-189, -1144]
algo = SkOptSearch(
# parameter_names=space.keys(), # If you want to set the space
# parameter_ranges=space.values(), # If you want to set the space
points_to_evaluate=previously_run_params,
evaluated_rewards=known_rewards,
)
algo = ConcurrencyLimiter(algo, max_concurrent=4)
scheduler = AsyncHyperBandScheduler()
tuner = tune.Tuner(
easy_objective,
tune_config=tune.TuneConfig(
metric="mean_loss",
mode="min",
search_alg=algo,
scheduler=scheduler,
num_samples=10 if args.smoke_test else 50,
),
run_config=air.RunConfig(
name="skopt_exp_with_warmstart",
),
param_space={
"steps": 100,
"width": tune.uniform(0, 20),
"height": tune.uniform(-100, 100),
"activation": tune.choice(["relu", "tanh"]),
},
)
results = tuner.fit()
print("Best hyperparameters found were: ", results.get_best_result().config)