ray.train.xgboost.XGBoostCheckpoint
ray.train.xgboost.XGBoostCheckpoint#
- class ray.train.xgboost.XGBoostCheckpoint(local_path: Optional[Union[str, os.PathLike]] = None, data_dict: Optional[dict] = None, uri: Optional[str] = None)[source]#
Bases:
ray.air.checkpoint.Checkpoint
A
Checkpoint
with XGBoost-specific functionality.Create this from a generic
Checkpoint
by callingXGBoostCheckpoint.from_checkpoint(ckpt)
.PublicAPI (beta): This API is in beta and may change before becoming stable.
- classmethod from_model(booster: xgboost.core.Booster, *, preprocessor: Optional[Preprocessor] = None) XGBoostCheckpoint [source]#
Create a
Checkpoint
that stores an XGBoost model.- Parameters
booster – The XGBoost model to store in the checkpoint.
preprocessor – A fitted preprocessor to be applied before inference.
- Returns
An
XGBoostCheckpoint
containing the specifiedEstimator
.
Examples
>>> import numpy as np >>> import ray >>> from ray.train.xgboost import XGBoostCheckpoint >>> import xgboost >>> >>> train_X = np.array([[1, 2], [3, 4]]) >>> train_y = np.array([0, 1]) >>> >>> model = xgboost.XGBClassifier().fit(train_X, train_y) >>> checkpoint = XGBoostCheckpoint.from_model(model.get_booster())
You can use a
XGBoostCheckpoint
to create anXGBoostPredictor
and preform inference.>>> from ray.train.xgboost import XGBoostPredictor >>> >>> predictor = XGBoostPredictor.from_checkpoint(checkpoint)