ray.train.mosaic.MosaicTrainer
ray.train.mosaic.MosaicTrainer#
- class ray.train.mosaic.MosaicTrainer(*args, **kwargs)[source]#
Bases:
ray.train.torch.torch_trainer.TorchTrainer
A Trainer for data parallel Mosaic Composers on PyTorch training.
This Trainer runs the
composer.trainer.Trainer.fit()
method on multiple Ray Actors. The training is carried out in a distributed fashion through PyTorch DDP. These actors already have the necessary torch process group already configured for distributed PyTorch training.The training function ran on every Actor will first run the specified
trainer_init_per_worker
function to obtain an instantiatedcomposer.Trainer
object. Thetrainer_init_per_worker
function will have access to preprocessed train and evaluation datasets.Example
>>> import torch.utils.data >>> import torchvision >>> from torchvision import transforms, datasets >>> >>> from composer.models.tasks import ComposerClassifier >>> import composer.optim >>> from composer.algorithms import LabelSmoothing >>> >>> import ray >>> from ray.air.config import ScalingConfig >>> import ray.train as train >>> from ray.air import session >>> from ray.train.mosaic import MosaicTrainer >>> >>> def trainer_init_per_worker(config): ... # prepare the model for distributed training and wrap with ... # ComposerClassifier for Composer Trainer compatibility ... model = torchvision.models.resnet18(num_classes=10) ... model = ComposerClassifier(ray.train.torch.prepare_model(model)) ... ... # prepare train/test dataset ... mean = (0.507, 0.487, 0.441) ... std = (0.267, 0.256, 0.276) ... cifar10_transforms = transforms.Compose( ... [transforms.ToTensor(), transforms.Normalize(mean, std)] ... ) ... data_directory = "~/data" ... train_dataset = datasets.CIFAR10( ... data_directory, ... train=True, ... download=True, ... transform=cifar10_transforms ... ) ... ... # prepare train dataloader ... batch_size_per_worker = BATCH_SIZE // session.get_world_size() ... train_dataloader = torch.utils.data.DataLoader( ... train_dataset, ... batch_size=batch_size_per_worker ... ) ... train_dataloader = ray.train.torch.prepare_data_loader(train_dataloader) ... ... # prepare optimizer ... optimizer = composer.optim.DecoupledSGDW( ... model.parameters(), ... lr=0.05, ... momentum=0.9, ... weight_decay=2.0e-3, ... ) ... ... return composer.trainer.Trainer( ... model=model, ... train_dataloader=train_dataloader, ... optimizers=optimizer, ... **config ... ) ... >>> scaling_config = ScalingConfig(num_workers=2, use_gpu=True) >>> trainer_init_config = { ... "max_duration": "1ba", ... "algorithms": [LabelSmoothing()], ... } ... >>> trainer = MosaicTrainer( ... trainer_init_per_worker=trainer_init_per_worker, ... trainer_init_config=trainer_init_config, ... scaling_config=scaling_config, ... ) ... >>> trainer.fit()
- Parameters
trainer_init_per_worker – The function that returns an instantiated
composer.Trainer
object and takes in configuration dictionary (config
) as an argument. This dictionary is based ontrainer_init_config
and is modified for Ray - Composer integration.datasets – Any Ray Datasets to use for training. At the moment, we do not support passing datasets to the trainer and using the dataset shards in the trainer loop. Instead, configure and load the datasets inside
trainer_init_per_worker
functiontrainer_init_config – Configurations to pass into
trainer_init_per_worker
as kwargs. Although the kwargs can be hard-coded in thetrainer_init_per_worker
, using the config allows the flexibility of reusing the same worker init function while changing the trainer arguments. For example, when hyperparameter tuning you can reuse the sametrainer_init_per_worker
function with different hyperparameter values rather than having multipletrainer_init_per_worker
functions with different hard-coded hyperparameter values.torch_config – Configuration for setting up the PyTorch backend. If set to None, use the default configuration. This replaces the
backend_config
arg ofDataParallelTrainer
. Same as inTorchTrainer
.scaling_config – Configuration for how to scale data parallel training.
dataset_config – Configuration for dataset ingest.
run_config – Configuration for the execution of the training run.
preprocessor – A ray.data.Preprocessor to preprocess the provided datasets.
resume_from_checkpoint – A MosiacCheckpoint to resume training from.
PublicAPI (alpha): This API is in alpha and may change before becoming stable.