ray.serve.air_integrations.PredictorWrapper
ray.serve.air_integrations.PredictorWrapper#
- class ray.serve.air_integrations.PredictorWrapper(predictor_cls: Union[str, Type[Predictor]], checkpoint: Union[Checkpoint, str], http_adapter: Union[str, Callable[[Any], Any]] = 'ray.serve.http_adapters.json_to_ndarray', batching_params: Optional[Union[Dict[str, int], bool]] = None, predict_kwargs: Optional[Dict[str, Any]] = None, **predictor_from_checkpoint_kwargs)[source]#
Bases:
ray.serve.air_integrations.SimpleSchemaIngress
Serve any Ray AIR predictor from an AIR checkpoint.
- Parameters
predictor_cls – The class or path for predictor class. The type must be a subclass of
ray.train.predictor.Predictor
.checkpoint –
The checkpoint object or a uri to load checkpoint from
The checkpoint object must be an instance of
ray.air.checkpoint.Checkpoint
.The uri string will be called to construct a checkpoint object using
Checkpoint.from_uri("uri_to_load_from")
.
http_adapter – The FastAPI input conversion function. By default, Serve will use the NdArray schema and convert to numpy array. You can pass in any FastAPI dependency resolver that returns an array. When you pass in a string, Serve will import it. Please refer to Serve HTTP adatpers documentation to learn more.
batching_params – override the default parameters to
ray.serve.batch()
. PassFalse
to disable batching.predict_kwargs – optional keyword arguments passed to the
Predictor.predict
method upon each call.**predictor_from_checkpoint_kwargs – Additional keyword arguments passed to the
Predictor.from_checkpoint()
call.
PublicAPI (alpha): This API is in alpha and may change before becoming stable.