ray.air.session.get_world_size
ray.air.session.get_world_size#
- ray.air.session.get_world_size() int [source]#
Get the current world size (i.e. total number of workers) for this run.
import time from ray.air import session from ray.air.config import ScalingConfig def train_loop_per_worker(config): assert session.get_world_size() == 4 train_dataset = ray.data.from_items( [{"x": x, "y": x + 1} for x in range(32)]) trainer = TensorflowTrainer(train_loop_per_worker, scaling_config=ScalingConfig(num_workers=1), datasets={"train": train_dataset}) trainer.fit()