ray.air.session.get_world_rank
ray.air.session.get_world_rank#
- ray.air.session.get_world_rank() int [source]#
Get the world rank of this worker.
import time from ray.air import session from ray.air.config import ScalingConfig def train_loop_per_worker(): for iter in range(100): time.sleep(1) if session.get_world_rank() == 0: print("Worker 0") train_dataset = ray.data.from_items( [{"x": x, "y": x + 1} for x in range(32)]) trainer = TensorflowTrainer(train_loop_per_worker, scaling_config=ScalingConfig(num_workers=1), datasets={"train": train_dataset}) trainer.fit()