ray.data.range_table
ray.data.range_table#
- ray.data.range_table(n: int, *, parallelism: int = - 1) ray.data.dataset.Dataset[ray.data._internal.arrow_block.ArrowRow] [source]#
Create a tabular dataset from a range of integers [0..n).
Examples
>>> import ray >>> ds = ray.data.range_table(1000) >>> ds Dataset(num_blocks=200, num_rows=1000, schema={value: int64}) >>> ds.map(lambda r: {"v2": r["value"] * 2}).take(2) [ArrowRow({'v2': 0}), ArrowRow({'v2': 2})]
This is similar to range(), but uses Arrow tables to hold the integers in Arrow records. The dataset elements take the form {“value”: N}.
- Parameters
n – The upper bound of the range of integer records.
parallelism – The amount of parallelism to use for the dataset. Parallelism may be limited by the number of items.
- Returns
Dataset holding the integers as Arrow records.
PublicAPI: This API is stable across Ray releases.