ray.data.DatasetPipeline.iter_rows
ray.data.DatasetPipeline.iter_rows#
- DatasetPipeline.iter_rows(*, prefetch_blocks: int = 0) Iterator[Union[ray.data.block.T, ray.data.row.TableRow]] [source]#
Return a local row iterator over the data in the pipeline.
If the dataset is a tabular dataset (Arrow/Pandas blocks), dict-like mappings
TableRow
are yielded for each row by the iterator. If the dataset is not tabular, the raw row is yielded.Examples
>>> import ray >>> for i in ray.data.range(1000000).repeat(5).iter_rows(): ... print(i)
Time complexity: O(1)
- Parameters
prefetch_blocks – The number of blocks to prefetch ahead of the current block during the scan.
- Returns
A local iterator over the records in the pipeline.