.. _tune-examples-ref: .. _tune-recipes: ================= Ray Tune Examples ================= .. tip:: See :ref:`tune-main` to learn more about Tune features. Below are examples for using Ray Tune for a variety of use cases and sorted by categories: * `ML frameworks`_ * `Experiment tracking tools`_ * `Hyperparameter optimization frameworks`_ * `Others`_ * `Exercises`_ .. _ml-frameworks: ML frameworks ------------- .. toctree:: :hidden: PyTorch Example PyTorch Lightning Example XGBoost Example LightGBM Example Hugging Face Transformers Example Ray RLlib Example Keras Example Ray Tune integrates with many popular machine learning frameworks. Here you find a few practical examples showing you how to tune your models. At the end of these guides you will often find links to even more examples. .. list-table:: * - :doc:`How to use Tune with Keras and TensorFlow models ` * - :doc:`How to use Tune with PyTorch models ` * - :doc:`How to tune PyTorch Lightning models ` * - :doc:`Tuning RL experiments with Ray Tune and Ray Serve ` * - :doc:`Tuning XGBoost parameters with Tune ` * - :doc:`Tuning LightGBM parameters with Tune ` * - :doc:`Tuning Hugging Face Transformers with Tune ` .. _experiment-tracking-tools: Experiment tracking tools ------------------------- .. toctree:: :hidden: Weights & Biases Example MLflow Example Aim Example Comet Example Ray Tune integrates with some popular Experiment tracking and management tools, such as CometML, or Weights & Biases. For how to use Ray Tune with Tensorboard, see :ref:`Guide to logging and outputs `. .. list-table:: * - :doc:`Using Aim with Ray Tune for experiment management ` * - :doc:`Using Comet with Ray Tune for experiment management ` * - :doc:`Tracking your experiment process Weights & Biases ` * - :doc:`Using MLflow tracking and auto logging with Tune ` .. _hyperparameter-optimization-frameworks: Hyperparameter optimization frameworks -------------------------------------- .. toctree:: :hidden: Ax Example HyperOpt Example Bayesopt Example BOHB Example Nevergrad Example Optuna Example Tune integrates with a wide variety of hyperparameter optimization frameworks and their respective search algorithms. See the following detailed examples for each integration: .. list-table:: * - :doc:`ax_example` * - :doc:`hyperopt_example` * - :doc:`bayesopt_example` * - :doc:`bohb_example` * - :doc:`nevergrad_example` * - :doc:`optuna_example` .. _tune-examples-others: Others ------ .. list-table:: * - :doc:`Simple example for doing a basic random and grid search ` * - :doc:`Example of using a simple tuning function with AsyncHyperBandScheduler ` * - :doc:`Example of using a trainable function with HyperBandScheduler and the AsyncHyperBandScheduler ` * - :doc:`Configuring and running (synchronous) PBT and understanding the underlying algorithm behavior with a simple example ` * - :doc:`includes/pbt_function` * - :doc:`includes/pb2_example` * - :doc:`includes/logging_example` .. _tune-examples-exercises: Exercises --------- Learn how to use Tune in your browser with the following Colab-based exercises. .. list-table:: :widths: 50 30 20 :header-rows: 1 * - Description - Library - Colab link * - Basics of using Tune - PyTorch - .. image:: https://colab.research.google.com/assets/colab-badge.svg :target: https://colab.research.google.com/github/ray-project/tutorial/blob/master/tune_exercises/exercise_1_basics.ipynb :alt: Open in Colab * - Using search algorithms and trial schedulers to optimize your model - PyTorch - .. image:: https://colab.research.google.com/assets/colab-badge.svg :target: https://colab.research.google.com/github/ray-project/tutorial/blob/master/tune_exercises/exercise_2_optimize.ipynb :alt: Open in Colab * - Using Population-Based Training (PBT) - PyTorch - .. image:: https://colab.research.google.com/assets/colab-badge.svg :target: https://colab.research.google.com/github/ray-project/tutorial/blob/master/tune_exercises/exercise_3_pbt.ipynb" target="_parent :alt: Open in Colab * - Fine-tuning Hugging Face Transformers with PBT - Hugging Face Transformers and PyTorch - .. image:: https://colab.research.google.com/assets/colab-badge.svg :target: https://colab.research.google.com/drive/1tQgAKgcKQzheoh503OzhS4N9NtfFgmjF?usp=sharing :alt: Open in Colab * - Logging Tune runs to Comet ML - Comet - .. image:: https://colab.research.google.com/assets/colab-badge.svg :target: https://colab.research.google.com/drive/1dp3VwVoAH1acn_kG7RuT62mICnOqxU1z?usp=sharing :alt: Open in Colab Tutorial source files are on `GitHub `_.